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ABSTRACT

The timing of protolith formation, ultra-
high-pressure (UHP) subduction, and subse-
quent exhumation for the ultrahigh-pressure 
to high-pressure units across the eastern part 
of the Western Gneiss Region, Norway, were 
assessed using U/Pb zircon, Th/Pb mona-
zite, and 40Ar/39Ar white mica ages. U/Pb 
zircon ages from eclogites demonstrate that 
oceanic and continental allochthons were 
emplaced onto the Baltica basement before 
the entire mass was subducted to (ultra)high 
pressure. Eclogites within the allochthons 
across the entire Western Gneiss Region 
are Caledonian and show a degree of zircon 
(re)crystallization that increases with peak 
pressure, permitting the interpretation that 
the entire region underwent synchronous sub-
duction. 40Ar/39Ar white mica ages of 399 Ma 
indicate that the eastern part of the Western 
Gneiss Region had been exhumed to shallow 
crustal levels while UHP metamorphism was 
ongoing farther west, indicating a westward 
dip to the slab. The 40Ar/39Ar white mica ages 
also show a clear east-to-west gradient across 
the entire Western Gneiss Region, indicat-
ing that the Western Gneiss Region rose dia-
chronously to crustal levels from east to west 
between 399 and 390 Ma.

Keywords: ultrahigh pressure, Western Gneiss 
Region, secondary ion mass spectrometry, 
40Ar/39Ar, exhumation, laser ablation inductively 
coupled plasma–mass spectrometry.

INTRODUCTION

Since the discovery of coesite in regional 
metamorphic rocks (Smith, 1984), geologists 
have sought to understand how large-scale 
ultrahigh-pressure (UHP) terranes are formed 
and exhumed. The study of these terranes has 
yielded valuable insights into geological pro-
cesses active in the mantle and lower crust, 
including continental collisions and the recy-
cling of continental crust. The rates and mecha-
nisms of UHP subduction and exhumation 
remain elusive, however, even in well-studied 
terranes such as the Western Gneiss Region of 
southwestern Norway.

The Western Gneiss Region, a ~50,000 km2 
terrane of Proterozoic orthogneisses (the autoch-
thonous Western Gneiss Complex, Fig. 1) over-
lain by mixed Proterozoic to Phanerozoic ortho-
gneissic and paragneissic units (Lower, Middle 
and Upper Allochthons, Fig. 1), contains one of 
the largest known UHP terranes. UHP is evident 
from coesite or quartz-pseudomorphs-after-
coesite, most common in eclogites that crop out 
in three distinct zones along the western edge of 
the Western Gneiss Region (Root et al., 2005). 
These UHP eclogites are surrounded by high-
pressure eclogites that stretch at least another 
100 km north, east, and south across the West-
ern Gneiss Region (Cuthbert et al., 2000; Walsh 

and Hacker, 2004). Excellent exposure provides 
an unparalleled opportunity to investigate not 
only the UHP rocks but also the less-studied, 
high-pressure (HP) rocks that surround the UHP 
terrane. These lower pressure rocks provide 
important constraints on both the protolith of the 
HP-UHP terrane and the tectonic processes that 
led to exhumation of the UHP rocks.

The purpose of this study is to determine the 
timing of protolith formation, metamorphism, 
and subsequent exhumation across the Norwe-
gian HP-UHP terrane—from the foreland into 
the core of the orogen. We seek to answer the 
following questions and thus better constrain the 
mechanisms of UHP rock exhumation: (1) What 
are the protolith ages of the high-pressure ter-
rane? (2) Was the high-pressure metamorphism 
in the eastern part of the Western Gneiss Region 
coeval with the UHP metamorphism in the west? 
(3) What is the age of the subsequent high-tem-
perature metamorphism and deformation in the 
eastern part of the Western Gneiss Region? (4) 
When were the rocks across the entire region 
exhumed into the upper crust?

To address these questions, we dated zircon, 
monazite, and muscovite from eclogites and 
metapelites within an E-W transect across the 
width of the Western Gneiss Region (Fig. 2). 
U/Pb ages of zircons were measured by sec-
ondary ion mass spectrometry (SIMS) and by 
laser-ablation multiple-collector inductively 
coupled plasma–mass spectrometry (LA-MC-
ICP-MS, henceforth “ICP”) both of which 
provide the spatial resolution necessary for 
deciphering protolith ages from  metamorphic 
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ages. High-temperature metamorphic ages were 
obtained by ICP analysis of Th/Pb decay in 
monazite from metapelites, and 40Ar/39Ar analy-
sis of muscovite collected from metapelites and 
quartzites across the region provided the timing 
of exhumation into the upper crust. Zircon ages 
demonstrate that the high-pressure metamor-
phism in the east was broadly coeval with the 
UHP metamorphism in the west. Exhumation 
through the upper crust began in the east while 
UHP metamorphism was occurring in the west, 
and continued from east to west over ~9 m.y.

GEOLOGIC SETTING

Closure of the Iapetus Ocean initiated the 
Scandian Orogeny at ca. 435 Ma, resulting in the 
emplacement of a series of allochthons onto the 
Baltic Shield basement (the Autochthon or West-
ern Gneiss Complex, Fig. 1) by ca. 415 Ma (Rob-
erts, 2003). These allochthons include (from top 
to bottom) the eastern margin of Laurentia (the 
Uppermost Allochthon, not present in the study 
area), Iapetus ophiolites (the Upper Allochthon), 
the western margin of Baltica or a microcontinent 
(the Middle Allochthon), and allochthonous sliv-
ers of the Baltic Shield (Parautochthon) and its 
sedimentary cover (the Lower Allochthon). The 
continental margin of Baltica was then buried to 
UHP conditions up to 3.6 GPa and 800 °C (Cuth-
bert et al., 2000; Terry et al., 2000b) by ca. 410–
400 Ma (Fig. 3). It was rapidly exhumed soon 
afterward (e.g., Root et al., 2005), in part along 
crustal shear zones that include the large-scale 

Nordfjord-Sogn Detachment Zone (Hacker et al., 
2003; Johnston et al., in press).

In the foreland east of the Western Gneiss 
Region (Fig. 1) the Western Gneiss Complex is 
overlain by demonstrably allochthonous units. 
There the allochthonous units include ca. 480 Ma 
ophiolites, ca. 440 Ma ophiolites (Upper Alloch-
thon), and the telescoped former margin of the 
Baltica craton (Middle and Lower Allochthons; 
e.g., Hacker and Gans, 2005). These units have 
been traced westward across the entire Western 
Gneiss Region and correlated with composition-
ally similar mixed orthogneiss and paragneiss 
units in the UHP core of the orogen (Krill, 1985; 
Rickard, 1985; Robinson, 1995; Terry et al., 
2000a); throughout this paper we shall refer to 
these rocks as allochthons, following the above 
authors, although alternative interpretations 
cannot be refuted. The UHP eclogites crop out 
within three culminations along the western 
edge of the Western Gneiss Region; similar UHP 
and HP eclogites occur within both the West-
ern Gneiss Complex basement and the inferred 
allochthonous rocks (Root et al., 2005).

The objective of our work is to understand 
the behavior of the entire body of rock that was 
subducted into the mantle and then exhumed. 
Toward this end, we chose to study a com-
plete, 220 × 100 km E-W swath across the 
eclogite-bearing portion of the Western Gneiss 
Region (Fig. 2). The western limit of the study 
area is the eastern edge of the Stadtlandet-Nord-
fjord UHP domain (as defi ned by Root et al., 
2005), and the eastern limit is marked by the 

large thrust sheets exposed in the foreland. Pre-
viously (Walsh and Hacker, 2004), we showed 
that the eclogites in this swath recrystallized at 
peak temperatures and minimum pressures of 
~700 °C and ~1.8 GPa, with two rocks exhib-
iting evidence of UHP. The eclogites and their 
quartzofeldspathic and pelitic host gneisses then 
underwent a late amphibolite-facies metamor-
phism at 650–750 °C and ~1.1 GPa (Walsh and 
Hacker, 2004); we call this a supra-Barrovian 
metamorphism because the pressures are higher 
than classic Barrovian metamorphism, culmi-
nating in kyanite-stable rather than sillimanite-
stable assemblages (Fig. 3). This was followed 
by or transitioned into a second, low-pressure, 
Buchan-style amphibolite-facies metamor-
phism at 650–750 °C and ~0.6 GPa (Fig. 9 of 
Walsh and Hacker, 2004). This same sequence 
of supra-Barrovian amphibolite-facies overprint 
and Buchan-style amphibolite- to granulite-
facies overprint is also seen in the UHP domains 
(Terry et al., 2000b; Root et al., 2005), indicat-
ing that it is characteristic of the (U)HP Western 
Gneiss Region as a whole. The amphibolite-
facies fabric, including a strong foliation, isocli-
nal folds with E-W axes, and a moderately to 
shallowly E- or W-plunging stretching lineation, 
is defi ned by quartz, biotite, amphibole, plagio-
clase, or muscovite; throughout the bulk of the 
study area, this amphibolite-facies fabric is only 
weakly overprinted by greenschist-facies defor-
mation or metamorphism in the study area.

The age of the eclogite-facies event in the UHP 
domains is constrained by two three-point Sm/
Nd isochrons of 408 ± 8 Ma (Mearns, 1986) and 
400 ± 16 Ma (Mørk and Mearns, 1986), U-Pb 
zircon ages of 401.6 ± 1.6 Ma (Carswell et al., 
2003) and 405–400 Ma (Root et al., 2004), and a 
monazite Th-Pb age of 415 ± 6.8 Ma (Terry et al., 
2000a). There were, however, at least three other 
(U)HP events in the Scandinavian Caledonides—
ca. 423 Ma, ca. 452–450 Ma, and ca. 503 Ma 
(see summary in Brueckner and van Roermund, 
2004)—making it crucial to determine the ages 
of the eclogites that span the eastern part of the 
Western Gneiss Region before constructing tec-
tonic models for their exhumation.

There are also insuffi cient constraints on the 
ages of the two amphibolite-facies events that 
subsequently affected the HP rocks; having 
this information would provide important pins 
on the exhumation process. High-temperature 
chronometers that closed during these events 
include (1) sphene, zircon, and monazite from 
Precambrian basement gneiss and granodiorite 
north of Tafjord that underwent partial Pb loss at 
ca. 395 Ma (Fig. 2 of Tucker et al., 1990; Tucker 
et al., 2004), and (2) monazite growth in the 
microdiamond-bearing gneiss on Fjørtoft at 398 
± 6 Ma (Terry et al., 2000a). 40Ar/39Ar mica ages 
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Figure 1. Geologic map of the Western Gneiss Region. Study area lies within the black box. 
UHP—ultrahigh pressure.



Exhumation of (ultra)high-pressure rocks, Norway

 Geological Society of America Bulletin, March/April 2007 291

from the Western Gneiss Region, which provide 
a lower bound on the ages of the amphibolite-
facies events, vary across the orogen from 401 
to 369 Ma (Andersen et al., 1998; Chauvet and 
Dallmeyer, 1992).

METHODS

Eclogites and muscovite-bearing metapelites 
and quartzites were sampled from all tec-
tonostratigraphic units across the entire 220 × 
100 km E-W swath, with care taken to ensure 
an even distribution. Thin sections were then 
checked for zircon or monazite >~50 µm and 
muscovite of ~1 mm for separation and dating.

Metamorphic zircons from the Norwegian 
Caledonides generally contain inherited cores 
surrounded by thin, low-U rims (Root et al., 
2004). Methods well suited to dating the rims 
and cores of zircons separately include SIMS 
and ICP, which provide a spatial resolution of 
~20–30 µm. The zircons from selected samples 
were separated by standard techniques, hand-
picked, and mounted in 1-in.-diameter epoxy 
mounts with the 1099 Ma zircon standard AS3 
(Paces and Miller, 1993). Because our goal was 
to decipher both the age of the protolith and the 
age of metamorphism, the grains in one mount 
were polished approximately halfway through 
to expose grain cores, and the grains in a second 
mount were barely polished to expose only the 
thin metamorphic rims. Cathodoluminescence 
(CL) images of all zircons were obtained with 
a JEOL 6300 scanning electron microscope 
and a home-built imaging system at the Univer-
sity of California, Santa Barbara. Grains pol-
ished through their cores provided detailed CL 
images, which were used to interpret the genesis 
of the grains (following Corfu et al., 2003a) and 
to choose the placement of spot analyses: oscil-
latory-zoned cores for protolith ages and thin, 
low-U rims for metamorphic ages. The barely 
polished grains did not yield detailed CL images, 
as only the exterior, generally homogeneous rim 
was imaged. In this case, spot ages were taken 
from the widest part of the grain (the center, in 
most cases), or the part of the grain most free 
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Figure 2. Geologic map of the study area. 
Sample localities are shown (see also box at 
upper right), and strike and dip symbols are 
shown. Small black dots mark sample ages 
from: (1) Tucker et al. (1990), (2) Fossen 
and Dunlap (1998), (3) Solheim (1980), (4) 
Terry et al. (2000a), (5) Chauvet and Dall-
meyer (1992), (6) Mørk and Mearns (1986), 
(7) Carswell et al. (2003), (8) Krogh et al. 
(2003), (9) Root et al. (2005).



Walsh et al.

292 Geological Society of America Bulletin, March/April 2007

of blemishes, to optimize the amount of the rim 
analyzed. Finally, the mounts were cleaned, 
coated with 20–40 nm of gold, and analyzed 
on the Cameca IMS-1270 ion probe at the Uni-
versity of California, Los Angeles, using pro-
cedures detailed in Quidelleur et al. (1997) and 
Miller et al. (2000). After SIMS analysis, these 
mounts were repolished and analyzed using a 
New Wave Research 193 nm ArF excimer laser 
attached to the Micromass Isoprobe ICP at the 
University of Arizona (for further details, see 
Appendix DR1).1 Additional zircons exposed 
in polished thin sections were analyzed in situ. 
Monazites were dated in thin sections by Th/Pb 
decay using ICP and an ~10-µm diameter laser 
beam (for further details, see Appendix DR1). 
The monazites were identifi ed in thin section 
by optical microscopy or back-scattered elec-
tron microscopy; zoning was not investigated 

because the grains were similar in size to the ion 
probe and laser beams.

U-Th/Pb data were analyzed using Isoplot 
by Ludwig (2001). Isotopic ratios for both 
SIMS and ICP data were corrected for com-
mon lead using a 204Pb correction and the model 
of Stacey and Kramers (1975). In most cases, 
measured 206Pb/204Pb is large, and the 204Pb cor-
rection does not signifi cantly change the ages. 
Th/U ratios for zircon analyses were used, in 
conjunction with the CL images, to help deter-
mine whether the zircon analyzed formed by 
igneous or metamorphic processes (see Hoskin 
and Schaltegger, 2003).

Eleven muscovite samples were separated 
using standard techniques, irradiated for 20 h 
at Oregon State University, and analyzed by 
resistance-furnace step heating at the Univer-
sity of California, Santa Barbara, using tech-
niques described by Calvert et al. (1999). Pro-
duction ratios used were 36Ca/37Ca = 2.6832 
× 10−4, 40K/39K = 3.7 × 10−4, and 39Ca/37Ca = 
8.7549 × 10−4. Ar isotopic data were analyzed 
using Eyesorecon by B.R. Hacker and Isoplot 
(Ludwig, 2001). Sanidine from the Taylor 
Creek Rhyolite was used as a fl uence  monitor, 

for which we assumed an age of 28.34 Ma 
(Renne et al., 1998).

All age uncertainties reported and discussed 
in this paper represent the 95% confi dence inter-
val and include errors in decay constants unless 
stated otherwise.

RESULTS

Eclogite Zircons

Zircons were extracted from four eclo gites 
(samples e1612q, e9812d2, e9804b, and 
e9801e) distributed across the study area—
from the least-retrogressed eclogite in the west 
to the eclogite closest to the foreland in the east 
(Fig. 2). All eclogites exhibit the breakdown of 
omphacite to clinopyroxene plus plagioclase as 
well as the decomposition of clinopyroxene to 
amphibole plus plagioclase. All the eclogites 
also contain amphibole, generally as a sec-
ondary phase, and all except sample e9812d2 
contain secondary biotite. Plagioclase is pres-
ent only as a breakdown product; all samples 
except e1612q contain quartz. Garnet from 
eclogite samples e9801e, e9804b, and e9812d2 
have coronae of amphibole plus plagioclase 
plus spinel. Accessory phases include zoisite/
epidote, apatite, and rutile; inclusions in garnet 
consist of zoisite, rutile, zircon, opaque miner-
als, and amphibole.

Eclogite sample e9812d2 was collected from 
the allochthons in the west. Zircons from eclo-
gite sample e9812d2 are colorless and prismatic 
(with aspect ratios of ~2:1) or rounded, rang-
ing in width from ~50 to 150 µm. Twenty-two 
grains were analyzed with 23 spots. Half-pol-
ished grains show fairly homogeneous CL with 
faint, patchy, darker (higher U) zones at the cen-
ter, suggesting extensive metamorphic recrys-
tallization (Fig. 4). A broad range of spot ages 
indicates Caledonian overprinting of a Precam-
brian protolith; 11 points can be fi t to a discor-
dia with a fi xed lower intercept of 400 ± 5 Ma 
(approximating the youngest ages of samples 
e9801e and e1612q; see the following) and a 
Sveconorwegian upper intercept of ca. 1.1 Ga 
(Fig. 5A). A concordia age calculated for the 
fi ve youngest spot ages is 412 ± 25 Ma (MSWD 
= 1.1; see Wendt and Carl, 1991, for a discus-
sion of the signifi cance of MSWD [mean square 
of weighted deviates]).

The least retrogressed eclogite, sample 
e1612q, was collected from allochthons south 
and east of sample e9812d2. This eclogite con-
tains relict kyanite surrounded by spinel-plagio-
clase symplectites and relict phengite partially 
decomposed to biotite plus plagioclase. The gar-
net and clinopyroxene form compositional lay-
ers, and the garnet contains kyanite inclusions. 
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Figure 3. Pressure-temperature conditions of the UHP, supra-Barrovian, Barrovian, and 
Buchan metamorphic episodes in the Western Gneiss Region of Norway (Engvik et al., 
2000; Ravna and Terry, 2004; Root et al., 2005; Terry et al., 2000b; Wain, 1998; Walsh and 
Hacker, 2004; Young et al., 2007); calculated thermal gradients for the Costa Rica subduc-
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1GSA Data Repository item 2007063, Appen-
dix DR1, details for LA-MC-ICP-MS; Appendix 
DR2, 40Ar/39Ar data; Table DR1, zircon and titanite 
data; and Table DR2, ICP monazite data; is avail-
able on the Web at http://www.geosociety.org/pubs/
ft2007.htm. Requests may also be sent to editing@
geosociety.org.
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Zircons are generally colorless and rounded, 
and range in size from ~50 to 100 µm, with a 
fraction as fi ne as 25 µm, so that only one spot 
was analyzed for each of 28 grains. Half-pol-
ished grains show fairly homogeneous CL with 
some higher U, angular, zoned cores—charac-
teristics that, again, suggest extensive metamor-
phic recrystallization (Fig. 4). Eclogite sample 
e1612q yielded a progression of 206Pb/238U 
spot ages from 463 ± 62 Ma to 392 ± 14 Ma 
(Fig. 5B). The three youngest ages yield a 
slightly over-corrected Scandian concordia age 
of 396 ± 10 Ma (MSWD of concordance plus 
equivalence = 0.94), and the remaining 12 spot 
ages give a Caledonian concordia age of 436 
± 10 (MSWD of equivalence = 0.92; Fig. 5B).

Sample e9801e was taken from allochthons 
near the eastern edge of the study area. Its zir-
cons are colorless to pale pink, have aspect 
ratios of ~2:1, rounded terminations, and range 
in size from ~50 to 100 µm. In CL, the zircons 
polished through the core show thin, bright 
(lower-U) rims surrounding oscillatory-zoned 
cores (Fig. 4). The cores yield Th/U > 0.1, 
which, along with the zoning patterns, indi-
cates an igneous origin (Hoskin and Schalteg-
ger, 2003). The rounded morphologies of most 
grains, low Th/U rims (<0.09; Table DR1, see 
footnote 1), and CL patterns of the half-pol-
ished grains indicate that these zircons then 
underwent partial metamorphic recrystalliza-
tion or new metamorphic growth. The zircons 
from sample e9801e were too small to allow 
more than one analysis per grain; 21 were ana-
lyzed. These range in 206Pb/238U age from 1625 
± 76 Ma to 374 ± 22 Ma and yield three clusters 
of concordant ages—403 ± 21 Ma (MSWD = 
0.21), 459 ± 8 Ma (MSWD = 2.1), 905 ± 31 Ma 
(MSWD = 2.8)—and one older cluster with a 
206Pb/238U age of ca. 1.4 Ga and a 207Pb/206Pb age 
of ca. 2.1 Ga (Fig. 5C). Th/U ratios of the oldest 
two age groups extend from 0.1 to 0.8, suggest-
ing that these analyses are igneous. The younger 
two age groups contain Th/U ratios implying 
mixtures of metamorphic and igneous material: 
0.04–0.72 for the ca. 460 Ma group and 0.6–1.6 
for the ca. 403 Ma group (Table DR1, see foot-
note 1). No single discordia fi ts these data, 
which instead suggest at least two Precambrian-
age components affected by Pb loss during the 
Caledonian and Scandian (Fig. 5C). A discordia 
fi xed to a lower intercept of 403 ± 21 Ma and fi t 
through the oldest four points yields an upper 
intercept of 2060 ± 78 Ma (MSWD = 0.60).

Finally, eclogite sample e9804b is from base-
ment gneiss west, near the center of the study 
area. This eclogite includes clinopyroxene with 
exsolved silica rods and phengite broken down 
to biotite plus plagioclase. Similar to sample 
e9801e, the zircons are colorless to pale pink, 

have aspect ratios of ~2:1, rounded terminations, 
and range in size from ~50–100 µm. In CL, the 
half-polished zircons display thin, bright (lower-
U) rims surrounding sector-zoned cores (Fig. 4) 
with Th/U > 0.1. Again, the low Th/U ratios and 
zoning patterns indicate an igneous origin for the 
cores, whereas the generally rounded morpholo-
gies of most grains, the low Th/U rims (<0.09; 
Table DR1, see footnote 1), and CL patterns of 
the half-polished grains indicate a later partial 
metamorphic recrystallization or new metamor-
phic growth. Twenty-four grains were analyzed 
with single spots, yielding chiefl y Precambrian 
ages (Fig. 5D). A concordia age for four of the 
points is 1562 ± 39 Ma (MSWD = 0.00053), 
and a discordia fi t through all 13 points and tied 
to a lower intercept of 400 ± 5 Ma (approxi-
mating the youngest ages of samples e9801e 
and e1612q) yields an upper intercept of 1612 
± 22 Ma (MSWD = 1.5).

These data are discussed in detail later, but in 
summary the zircon ages indicate that eclogites 
across the Western Gneiss Region recrystallized 
in the Caledonian rather than being relicts of an 
earlier eclogite-facies event. The errors for the 
zircon ages are too large to assess whether the 
eclogites recrystallized simultaneously or dia-
chronously, or whether they recrystallized dur-
ing specifi c Caledonian events recognized else-
where in the orogen; but the least-retrogressed 
eclogite, sample e1612q, yields a Scandian age 
of 396 ± 10 Ma.

Metapelite Monazites and Zircons

Pelites across the Western Gneiss Region 
underwent a post-UHP amphibolite-facies meta-
morphism at supra-Barrovian depths of ~40 km 
and ~650–750 °C (Terry and Robinson, 2003; 
Walsh and Hacker, 2004; Root et al., 2005). This 
was followed by continued recrystallization 
down to depths of ~20 km. To constrain the tim-
ing of these events, we dated monazites from the 
same set of pelitic samples used by Walsh and 
Hacker (2004) to assess pressures and tempera-
tures. The bulk of these samples shows amphib-
olite-facies fabrics with minimal lower tempera-
ture deformation; only sample e1622f1 contains 
biotite and quartz with undulatory extinction 
suggestive of minor greenschist-facies rework-
ing. The monazite grains are generally ~20–50 
µm in size and xenoblastic. They are dominantly 
associated with biotite, and most occur along 
biotite-biotite grain boundaries; exceptions 
include monazite A-6 from sample e9819d1 
against fi brolite, and the monazites from sample 
e9809o2, which are surrounded by clusters of 
fi ne metamorphic epidote.

The monazites are small enough so that only 
one spot was analyzed per grain, although up to 
11 grains were analyzed in one sample. More 
than half the grains analyzed (47 of 76) yielded 
208Pb/232Th ages younger than ca. 435 Ma 
(Table DR2, see footnote 1; Fig. 6), indicating 
pervasive Caledonian (re)crystallization. Pelite 

Figure 4. Cathodoluminescence images of representative zircons from eclogites; 206Pb/238U 
spot ages are shown. Eclogites in the western part of the study area (samples e9812d2, 
e1612q) exhibit recrystallized textures, whereas eclogites from farther east show oscillatory 
or sector zoning (samples e9804b, e9801e).
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sample e9804c1 gave a broad range of seven 
208Pb/232Th ages from 1692 ± 189 Ma through 
399 ± 26 Ma; the mean of the two youngest 
208Pb/232Th ages is 403 ± 17 Ma. Pelite sample 
e9809o2 gave fi ve 208Pb/232Th ages from 979 
± 46 to 801 ± 34 Ma. Pelite sample e9804c7 
yielded a continuous spread of 208Pb/232Th ages 
chiefl y from ca. 503 to ca. 385 Ma; the youngest 
four 208Pb/232Th spot ages have a weighted mean 
of 392 ± 10 Ma (MSWD = 0.51). Pelite sample 
e9819d1 yielded a continuous spread of 32 
208Pb/232Th ages ranging chiefl y from ca. 472 Ma 
to ca. 397 Ma. The other four monazite-bear-
ing pelites (samples e1605a, e1612a, e1622f1, 
e9731d2) gave strictly Caledonian 208Pb/232Th 
ages mostly in the ca. 435–395 Ma range.

Several tiny zircons were analyzed in situ 
in thin sections from pelite samples e1612a 
and e9804c7. Four spots (one per grain) from 
sample e1612a yielded a concordia age of 480 
± 12 Ma (MSWD = 0.1; Fig. 7A); Th/U ratios 
of 0.03–0.67 imply mixed igneous and meta-
morphic domains. Four spots from four grains 
from pelite e9804c7, a basement sample, 
yielded a spread of 206Pb/238U ages from 2159 
± 140 Ma to 403 ± 42 Ma and a concordia age 
of 2094 ± 77 Ma (MSWD of equivalence = 1.6) 
for the three oldest spot ages (Fig. 7B).

Again, the errors for the individual spot ages 
for the metapelite monazites and zircons are too 
large to assess specifi cally when these meta-
morphic events occurred during the Caledonian 
orogeny, but they are compatible with either 
long-term recrystallization or incomplete short-
term recrystallization. The youngest monazite 
age (weighted mean of 392 ± 10 Ma) overlaps 
previously recorded ages for the UHP meta-
morphism, implying that the amphibolite-facies 
metamorphism followed closely on the heels 
of the UHP event. The protolith zircon age of 
ca. 2.1 Ga for pelite sample e9804c7 is equiva-
lent to the old age noted for basement gneiss 
sample e9801e, and distinctly older than more 
typical Western Gneiss Region protolith ages of 
1.7–1.6 Ga.

Muscovite 40Ar/39Ar Ages

Eleven K-white mica (henceforth, “musco-
vite”) separates were extracted from metapelites 
and quartzites from the basement and alloch-
thons across the study area to constrain the time 
by which the (U)HP rocks had cooled below 
~400 °C. In the bulk of the samples (from the 
Western Gneiss Region proper) the musco-
vites are millimeter sized and form part of the 
amphibolite-facies fabric; retrogression is mini-
mal, and only muscovite in samples e9816e 
and e9809g3 shows weak to strong undulatory 
extinction. In contrast, the two samples from the 

allochthons east of the Western Gneiss Region 
both have an order of magnitude of fi ner-grained 
muscovite showing strong kinking or undula-
tory extinction, and chlorite (sample e9730g1) 
or chloritoid (sample e1627i). The Si contents 
of the Western Gneiss Region muscovites are 
relatively low, ranging from 3.03 atoms per for-
mula unit in sample e9804j1 to 3.25 in sample 
e9731d2, with no apparent relationship between 
Si content, spectrum type, or age (Fig. 8A–K; 
Appendix DR2, see footnote 1). These features 
imply that these muscovites—and hence their 
ages—are the result of crustal amphibolite-
facies metamorphism and not UHP metamor-
phism (cf. Hacker et al., 2000).

Eight of the 11 muscovite sample separates 
gave plateau ages (>50% of released Ar): 390.3 
± 3.0 Ma (e9809g3), 389.8 ± 3.0 (e9809c), 391.2 
± 3.0 Ma (e9804j1), 394.3 ± 3.1 Ma (e1704c), 
395.2 ± 3.1 Ma (e9816e), 392.9 ± 3.1 Ma 
(e9818b), 399.1 ± 3.1 Ma (e9731d2), and 423.6 
± 3.3 Ma (e1627i). Three other samples did 
not yield plateau ages but have relatively fl at 
spectra for which we estimate weighted mean 
ages of 399.4 ± 3.4 Ma (e9810e), 391.5 ± 3.1 
(e9804c7), and 410.5 ± 3.4 Ma (e9730g1).

The most important feature of the muscovite 
ages is that they fall in a narrow range and show 
a steady westward decrease across the Western 
Gneiss Region from ca. 399 Ma in the east to 
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ca. 390 Ma in the west. This is a highly robust 
result because—although the total uncertainty 
for each of these ages is ~3 m.y.—the intralabo-
ratory uncertainties among the different samples 
are <1 m.y. (see Appendix DR2, see footnote 
1). Two of the three youngest ages (samples 
e9804j1 and e9809c) come from rocks that con-
tain sillimanite grown during the low-pressure 
metamorphic event that followed the supra-
Barrovian metamorphism (Walsh and Hacker, 
2004). The two muscovite ages from the thrust 
sheets east of the Western Gneiss Region are 
older: 410.5 ± 3.4 Ma and 423.6 ± 3.3 Ma, a 
likely result from an older metamorphic event 
(Hacker and Gans, 2005).

DISCUSSION

Precambrian Protolith Ages

Orthogneisses in the study area that are 
of Baltica affi nity are expected to yield 
(re)crystallization ages that correspond to one 
of the common events defi ned by existing U-Pb 
data: the Gothian orogeny at ca. 1690–1620 Ma 
(Skår, 2000), regional magmatic episodes at 
ca. 1530–1520 Ma and ca. 1290–1200 Ma, or 
the Sveconorwegian orogeny of ca. 950–930 Ma 
(Corfu and Andersen, 2002).

Ca. 1600 Ma U-Pb ages were found in eclo-
gite sample e9804b, indicating igneous crystal-
lization at the same time as some of the oldest 
known rocks in the Western Gneiss Complex. 
Sveconorwegian ages, the second-most com-
mon U-Pb ages for the Western Gneiss Region, 
are seen in eclogite samples e9812d2 (924 
± 60 Ma) and e9801e (904 ± 50 Ma). The 
upper intercept for sample e9801e is older 
than expected, ca. 2.1 Ga, and corresponds 
to the Svecofennian orogeny (Skår, 2002); 
basement sample e9804c7 yielded a simi-
lar concordant age of ca. 2.1 Ga (Fig. 7B). 
Skår (2000) reported Svecofennian quartzites 
along Sognefjord at Kvamsøy; although few 
other pre-Gothian rocks have been reported 
from the Western Gneiss Region, Gorbatschev 
and Gáal (1987) maintained that the Western 
Gneiss Complex formed during four separate 
orogenies between 3.5 Ga and 1.5 Ga, such 
that these 2.1 Ga ages, while unusual, are not 
unexpected.

The monazite grains record a wide spread 
of ages, with the oldest ages (in the basement 
pelites) corresponding to both the ca. 1600 Ma 
and ca. 950 Ma protolith ages of the Baltica 
gneisses. Whereas Precambrian monazite ages 
were found only in basement rocks, Precambrian 
zircon ages were measured in eclogite samples 
e9801e (Fig. 5C) and e9812d2 (Fig. 5A) from 
the Upper Allochthon.

Early Paleozoic Protolith Ages

Any allochthon orthogneisses that were 
derived from Iapetus oceanic or arc crust should 
record igneous or metamorphic ages of 490–
470 Ma or 450–430 Ma, whereas in contrast, 
Ordovician–Silurian magmatism is unknown 
in the Western Gneiss Complex (Hacker and 
Gans, 2005). Three Upper Allochthon samples, 
e1612a, e9801e, and e1612q, yielded a range of 
Caledonian zircon ages as well as early Paleo-
zoic protolith ages. Zircons from metapelite 
sample e1612a, from the Blåhø Nappe, yield 
a concordia age of 480 ± 12 Ma, similar to the 
ages of the Early Ordovician ophiolite alloch-
thons (Stephens et al., 1993). Eclogite sample 
e9801e, also from the Blåhø Nappe, shows a 
cluster of ages, implying mainly igneous (Th/U 
= 0.19–0.72) zircon growth at ca. 459 Ma and 
suggesting that both of these rocks are part of 
the Early Silurian oceanic allochthons. Eclo-
gite sample e1612q yields a cluster of ages 
at ca. 440 Ma, with Th/U ratios of 0.03–0.13 
indicative of metamorphic growth-recrystalliza-
tion; these ages may be related to the emplace-
ment of the allochthons onto the craton (e.g., 
Figure 8 of Hacker and Gans, 2005).

Scandian Metamorphism

Although the metamorphic zircon ages span a 
considerable range and do not tightly constrain 
the ages of eclogite-facies metamorphism in the 
study area—owing to limited recrystallization 
and large errors—they do show that eclogites 
across the entire width of the Western Gneiss 
Region underwent Scandian metamorphism. 
Sample e1612q yielded a concordia age of 
396 ± 10 Ma; the easternmost eclogite, sample 
e9801e, gave a concordia age of 403 ± 21; and 
a third, sample e9812d2, yielded 412 ± 25 Ma. 
These ages are indistinguishable from the 415–
400 Ma UHP event farther west (e.g., Root et al., 
2004) and the ca. 423 Ma Bergen Arcs eclogiti-
zation (Bingen et al., 2004), but are distinctly 
younger than the Precambrian garnet peridotites 
of the Western Gneiss Region (van Roermund 
and Drury, 1998), the ca. 450 Ma eclogites of 
the Uppermost Allochthon (Corfu et al., 2003b) 
and Seve Nappe (Brueckner and van Roermund, 
2004), and the ca. 504 Ma eclogites in the Seve 
Nappe of northern Sweden (Mørk et al., 1988). 
Basement eclogite sample e9804b was least 
affected by the Scandian (re)crystallization, 
yielding chiefl y Precambrian igneous zircons 
with metamorphic rims too thin to analyze.

Monazites from basement samples e9804c1 
and e9809o2 indicate signifi cant Precambrian 
inheritance (as old as ca. 1.7 Ga) and only minor 
Scandian (re)crystallization—perhaps because 

of low fl uid activities. In contrast, whereas 
monazites from the allochthon samples show 
some evidence of Precambrian inheritance, the 
bulk of the spot ages are Caledonian. Unfortu-
nately, the broad range of Caledonian ages from 
ca. 470 Ma to 395 Ma and their large errors can-
not be interpreted further.

Implications for Exhumation of the 
(Ultra)high-Pressure Rocks

The most robust and impressive geochro-
nological discovery of this study is the steady 
westward decrease in Western Gneiss Region 
muscovite 40Ar/39Ar ages from ca. 399 Ma in the 
east to ca. 390 Ma in the west (Fig. 9A; recall 
that these ages have relative uncertainties of 
<1 m.y.). This gradient continues farther west 
into the UHP domains, where muscovite ages 
are as old as 389 Ma and as young as 369 Ma 
(Root et al., 2005). It also continues farther 
east into the stack of thrust sheets overlying 
the Western Gneiss Region, fi rst stepping up to 
ca. 410–400 Ma and then to ca. 425–410 Ma 
(Dallmeyer, 1990; Hacker and Gans, 2005). All 
of these are cooling ages that postdate the UHP 
and amphibolite-facies metamorphic events. 
Figure 9B shows that this data set defi nes 
395 Ma and 390 Ma muscovite “chrontours” 
(see also Root et al., 2005; Hacker, 2007). This 
gradient in ages roughly parallels the eclo gite-
facies pressure gradient across the Western 
Gneiss Region, with older ages and lower pres-
sures in the HP domain in the east and younger 
ages and higher pressures in the UHP domains 
in the west. The shape of the chrontours and the 
disposition of the UHP domains strongly sug-
gest that both are shaped by late, post-musco-
vite-closure folding, with the youngest ages and 
the highest pressures in the fold cores (cf. Root 
et al., 2005). These discoveries place signifi cant 
and important constraints on the exhumation of 
the (U)HP rocks.

The UHP rocks in the western part of Fig-
ure 9B were at eclogite-facies conditions at 
405–400 Ma (see summary in Root et al., 2004). 
Muscovite ages as old as 399.1 ± 3.1 Ma indi-
cate that the eclogites of the easternmost West-
ern Gneiss Region had reached crustal depths 
cool enough for muscovite closure at about that 
time or soon afterward. In other words, at 400–
399 Ma, the Western Gneiss Region dipped 
westward at an average of ~20° from depths 
of <20 km in the east to depths of ~100 km 
in the west (Fig. 10). Within 9 m.y. (by 390.3 
± 3.0 Ma), the western edge of the study area 
had also reached muscovite closure at shallow 
depths, documenting a diachronous, E-W exhu-
mation of the Western Gneiss Region to shallow 
crustal levels (Fig. 10).



Exhumation of (ultra)high-pressure rocks, Norway

 Geological Society of America Bulletin, March/April 2007 299

The 399 Ma ages for muscovites within the 
eastern Western Gneiss Region must postdate 
(1) the ca. 405–400 Ma HP metamorphism at 
>60 km depth, (2) the supra-Barrovian amphib-
olite-facies metamorphism at Moho depth, and 
(3) the fi nal low-P (pressure) metamorphism at 
20 km depth (documented in the sillimanite-
bearing basement rocks); this is a relatively rapid 

exhumation rate of >8–10 km/m.y. The 389 Ma 
ages for muscovites in the UHP domains must 
postdate (1) the ca. 405–400 Ma UHP metamor-
phism at >100 km depth, (2) the supra-Barro-
vian amphibolite-facies metamorphism at Moho 
depth (see also Root et al., 2005), (3) the sub-
sequent low-P metamorphism, and (4) the earli-
est stages of motion along the  Nord fjord-Sogn 

Detachment Zone, which occurred chiefl y at 
amphibolite-facies, but partly at upper green-
schist-facies, temperatures. This requires a simi-
larly rapid exhumation rate of >6–9 km/m.y. 
These exhumation rates agree with the west 
Western Gneiss Region exhumation rates pro-
posed by others (including Terry et al., 2000a, 
2000b; Carswell et al., 2003; Root et al., 2004).
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The diachronous cooling history and similar, 
fast exhumation rates across the entire West-
ern Gneiss Region demonstrate that the entire 
Western Gneiss Region acted as a single unit 
during exhumation. The syn-UHP kinematics 
of the collision zone were essentially reversed 
en block during the exhumation, requiring either 
detachment and rise of part of the downgoing 
plate (à la Chemenda et al., 2001) or a reversal 
in plate motion (Fig. 10).

CONCLUSIONS

U/Pb zircon and monazite ages from across 
the Western Gneiss Region reveal a wider range 

of Precambrian protolith ages than previously 
reported; our data demonstrate the presence of 
Svecofennian and older protoliths in the east 
that will be helpful in reconstructing the pre-
Caledonian Baltica margin. Eclogite zircons 
show exclusively Caledonian metamorphism, 
indicating that oceanic and continental alloch-
thons were emplaced onto the Western Gneiss 
Complex before the entire package was sub-
ducted to (U)HP. These zircons demonstrate 
that the age of the high-pressure metamorphism 
in the east overlaps the Scandian UHP event 
(ca. 415–400 Ma) in the west. Monazite ages 
imply that, as in the western part of the Western 
Gneiss Region, the regional high-temperature 

metamorphism and associated amphibolite-
facies metamorphism were Scandian. The study 
area shows a distinct gradient in 40Ar/39Ar white 
mica ages, from 399 Ma in the east to 390 Ma in 
the west. This gradient reveals that the eclogite-
facies, eastern part of the Western Gneiss Region 
cooled through muscovite closure at nearly the 
same time that UHP metamorphism was active 
~200 km to the west, requiring that the slab 
dipped westward at ~20° at 400–399 Ma. The 
gradient also requires that the study area rose 
diachronously through muscovite-closure depths 
from east to west between 399 and 390 Ma. The 
entire Western Gneiss Region, including the 
eastern, high-pressure portion, was involved in 
the Scandian UHP subduction and exhumation.
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