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Abstract We jointly interpret P and S wave seismic attenuation (1/Q) along with previously published
seismic velocity results for the crust and uppermost mantle of eastern Nepal and the southern Tibetan
Plateau. Seismic attenuation measurements can provide information complementary to seismic velocity
estimates and can help distinguish between compositional and thermalmechanisms for observed anomalies. In
addition to a dramatic change in seismic velocity observed between the crust of Nepal and southern Tibet, we
find a large increase in seismic attenuation from high Q (low attenuation) in eastern Nepal to low Q (high
attenuation) in the crust beneath southern Tibet for both P waves and S waves. We interpret the broad zone of
low Q values in the southern Tibetan crust as thermal in origin, requiring an elevated geotherm (warm) relative
to Nepal, with low VP/VS corresponding to a dominantly felsic middle and upper crust beneath southern Tibet.
We find a sharply bounded region with enhanced low Q and high VP/VS at 45–50 km depth beneath southern
Tibet, which we suggest may be due to trapped fluid beneath an impermeable cap associated with the crustal
alpha-beta quartz transition. Using calibrations frommineral physics, the alpha-beta quartz transition suggests a
temperature of 930–960°C at 45 km depth (50 km beneath the surface) beneath the southern Tibetan Plateau.
High values ofQP andQS throughout the uppermost mantle in the region are consistent with cool temperatures
in the underthrusting Indian Plate, contributing to brittle conditions and earthquakes in the uppermost mantle.

1. Introduction and Background

The lithospheric structure of the Himalaya and the Tibetan Plateau—major features of continental collision
between India and Eurasia—is key for understanding the mechanisms that accompany and control deforma-
tion of the continental lithosphere. Phase transformations, in particular melting, play important roles in deter-
mining the rheology of the upper lithosphere in regions of continental collision. The Himalaya of Central Nepal
and the southernmost Tibetan Plateau are regions where this type of collision is ongoing, and processes active
within the underthrusting Indian Plate can be evaluated using seismological techniques (Figure 1).

India and southern Tibet are converging at an approximate rate of 20 ± 3mm/yr [Larson et al., 1999], resulting
in crust greater than 70 km thick [Zhao et al., 1993; Schulte-Pelkum et al., 2005; Priestley et al., 2008]. The
Himalayan Chain has formed as a result of crustal thickening and is composed largely of buried and exhumed
Indian crust [Molnar, 1984]. The convergence has been absorbed chiefly by thrusting along major fault zones,
with a southward progression of thrusting [Gansser, 1964; DeCelles et al., 2001; Robinson et al., 2003]. The
southern limit of the Himalayan Chain is defined by the Main Frontal Thrust; the boundary between India and
Eurasia is the Indus-Tsangpo suture zone [Hodges, 2000].

Leucogranites exposed in the Himalaya formedmostly during Eocene-Miocene partial melting of Indian crust
during the collision [Molnar, 1984; Beaumont et al., 2004]. Geophysical studies support the existence of a
partially molten or aqueous fluid-rich layer in the middle and lower crust beneath southern Tibet and the
Himalaya today [Nelson et al., 1996; Unsworth et al., 2005; Klemperer, 2006; Caldwell et al., 2009]. These ancient
and active features have been linked by tectonic models in which midcrustal material flows out from beneath
the plateau and is exhumed [Nelson et al., 1996; Clark and Royden, 2000; Beaumont et al., 2004]. Thus, although
collision should thicken the crust and reduce geothermal gradients, processes must exist to heat it and
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support melting as well as enhance crustal flow. An evaluation of the physical state of the upper lithosphere
across the Himalayan Chain and southernmost Tibet will help us deduce the presence or absence of fluids,
the dimensions over which they are distributed, and the properties of the host rock.

There is evidence for the occurrence of earthquakes below the seismically defined Moho beneath the High
and Tethyan Himalaya [Chen and Molnar, 1983; Chen and Yang, 2004; Schulte-Pelkum et al., 2005; Monsalve
et al., 2006], indicating that the continental uppermost mantle must provide part of the strength to support
the mountain and plateau loads and that the underthrusting Indian Plate beneath the southern edge of the
Tibetan Plateau should be cold enough to allow brittle failure. In this paper we summarize the measurement
of seismic attenuation using local earthquakes recorded on a temporary seismic network in eastern Nepal
and southern Tibet, with special emphasis on interpretation along with a previously published seismic ve-
locity model. We utilize the complementary nature of the attenuation and velocity models in order to better
constrain the physical state of the crust and upper mantle beneath the Himalaya.

2. Instruments and Data

The Himalayan Nepal Tibet Seismic Experiment (HIMNT) included the deployment of 30 broadband seismometers
throughout eastern Nepal and Southern Tibet from October 2001 to March 2003 [de la Torre and Sheehan, 2005;
Sheehan et al., 2008]. The stations were deployed in a 2-D grid with an approximate spacing of 50 km. Each station
consisted of a three-component Streckheisen STS2 broadband seismometer, and data were recorded continu-
ously at 40 or 50 samples per second. Over 1600 earthquakes ranging frommagnitude 1 to 5.5 were located using
the HIMNT data [Monsalve et al., 2006]. For the attenuation study the earthquake database was restricted to events
that werewell recorded by at least six stations, hadmagnitude> 2.0ML and had signal-to-noise ratio of at least 1.5.
Two hundred and forty earthquakes out of the 1649 cataloged inMonsalve et al. [2006] met these strict criteria.
The majority of the 240 earthquakes occurred at depths of 10–30 km along the Himalayan Arc and in the
southern Tibetan Plateau and at depths> 50 km in a cluster beneath the High Himalaya in the center of the
network (Figure 1).

3. Attenuation Measurements

Strong variations in spectral character are observed in the raw HIMNT waveforms (Figure 2). To quantify these
spectral variations, P and S waveforms from local events recorded by the HIMNT array were analyzed for atten-
uation and source effects following the method of Stachnik et al. [2004]. After removing the instrument response
and converting the seismograms from velocity to displacement, we determine amplitude as a function of

84˚

84˚

85˚

85˚

86˚

86˚

87˚

87˚

88˚

88˚

89˚

89˚

27˚ 27˚

28˚ 28˚

29˚ 29˚

30˚ 30˚

0 50 100

INDIA

NEPAL

CHINA

Kathmandu

MFT

ITSZ

Event depth (km)

BUNG

DINX

TUML

RBSH

Figure 1. Grey scale shaded relief map showing Himalayan Nepal Tibet Seismic Experiment (HIMNT) broadband seismograph stations (white
triangles) and earthquakes used in attenuation study (circles, colored by depth). See Figure S1 for path coverage. Station code is given for
seismographs referenced in the text (TUML, BUNG, DINX, and RBSH). MFT: Main Frontal Thrust; ITSZ: Indus Tsangpo Suture Zone. Station RBSH
(28.195°N, 86.828°E) is used as the center point (distance= 0 in cross sections) for the tomographic models. Ray coverage is shown in Figure S1.
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frequency f, A(f ), via amultitaper spectral analysis [Park et al., 1987; Boyd and Sheehan, 2005] for each seismogram
using a 3 s long window beginning 0.5 s before the P arrival on the vertical component or the S arrival on the
transverse component (Figure 3). A similarly processed noise spectrum is generated using a 3 s time window
ending 0.5 s before the phase arrival. Most of the P and Swave energy used in this study corresponds to crustal Pg
and Sg phases. Event-station pairs for which Pn is the first arrival, or Sn is the first shear wave arrival, should
represent less than 10% of the data. When that is the case, Pg or Sg should take upmost of the energy in the time
window used here, given that the epicentral distances are within a few tens of kilometers from the cross-over
distance where Pg and Sg are still large. Only frequencies with signal spectrum exceeding the noise spectrum are
used in measuring source and attenuation parameters. On average, for P waves the frequency band of the
measurements was 1.0–13.1 Hz, whereas for S waves it was 0.7–11.2 Hz. Following Stachnik et al. [2004], we as-
sume that the observed displacement spectrum A(f) for each event-station pair can be represented by

A fð Þ ¼ CM0 exp �πft*ð Þ
1þ f=fcð Þ2 (1)

where Mo is seismic moment of the earthquake, fc is the source corner frequency, t* is phase travel time di-
vided by the attenuation factor Q along the raypath, and C accounts for frequency-independent source
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Figure 2. Example (top) P and (bottom) Swave seismograms from 8May 2002Mw 3.7 earthquake, located at 28.51°N, 86.51°E, 84 km depth beneath the High Himalaya and recorded at (left)
seismic station DINX in southern Tibet (labeled “Northern Station”) and (right) seismic station BUNG in Nepal (Southern Station). All records are 7 s long. Window for spectral measurement is
3 s in duration and begins 0.5 s before the arrival. Vertical component is used for Pwave spectral measurement and transverse component is used for Swave spectral measurement. Vertical
scale varies by trace. Data from the northern station, despite being closer to the earthquake, have smaller amplitudes than those from the southern station and are depleted in high fre-
quencies relative to the southern station. STS2 seismometers were used in each case.
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excitation and propagation effects such as geometrical spreading [Aki and Richards, 2002]. Taking the natural
logarithm of equation (1) and rearranging terms gives

ln A fð Þð Þ þ ln 1þ f=fcð Þ2
� �

–ln Cð Þ ¼ ln Moð Þ þ �πfð Þt*: (2)

A system of equations of this form are solved simultaneously at all frequencies for all stations recording a single
event and phase (P or S), to determine a single fc and Mo for each event and a separate t* for each event-station
pair. C is calculated with the same approach as that used by Stachnik et al. [2004]. The equations are linear in t*
and ln(Mo) but nonlinear in fc. A grid search is performed over fc values from 0.25–50 Hz at 0.25 Hz intervals, and
at each fc the Mo and t* are found by weighted least squares inversion. The fc producing the smallest misfit is
chosen, with corresponding Mo and t*. The average of resulting fc values was 18.4 Hz for Pwaves and 14.1 Hz for
Swaves. Themoments (Mo) obtained from this method are positively correlated but biased low compared to the
moments obtained from full waveform moment tensor inversion [de la Torre et al., 2007] (Figure 4). Source pa-
rameters are determined separately for P and S, because fc may differ with phase [e.g., Madariaga, 1976].
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We assume here that the attenuation Q is independent of frequency f. Many laboratory and observational
studies have shown that Q increases weakly with frequency at mantle conditions [e.g., Karato and Spetzler,
1990; Flanagan and Wiens, 1998]. Laboratory studies of melt-free olivine-dominated rocks show that Q
increases as f 0.2–0.3 [e.g., Faul and Jackson, 2005], but comparable studies have not been done on crustal
rocks. Many studies of seismic wave propagation in continental crust show stronger frequency depen-
dence in tectonically active areas (Q~ f 0.4–0.7) [Mitchell, 1995], and significant bulk modulus attenuation
(indicated by QP/QS< 1) [e.g., Singh et al., 2012; Hazarika et al., 2013] unlike the laboratory studies, making
it difficult to directly apply laboratory studies of high-temperature mantle rocks to our crustal study, even
with corrections for homologous temperature. Moreover, some of these crustal observations of frequency
dependence have been called into question as a potential effect of incorrect geometric spreading cor-
rections [Morozov, 2009], so for simplicity we neglect this potential frequency dependence, and report only
frequency-independent t* and Q. Additional discussion of frequency dependence, and equations to con-
vert between frequency-independent and frequency-dependent Q values, can be found in Stachnik
et al. [2004].

Previous studies have shown that spectral fitting methods assuming frequency independence of Q—such as
ours—provide estimates ofQ that are close toQ at the highest frequencies sampled if frequency dependence
exists [Stachnik et al., 2004]. This is presumably because signals are most sensitive to Q at the highest fre-
quencies, where amplitudes are reduced the most. For these data, the highest frequencies are approximately
11–13 Hz, so Q estimates here should be considered to represent attenuation at those frequencies.

Themean t* calculated for the entire data set is 0.055 ± 0.0025 s for Pwaves and 0.075 s ± 0.0034 s for Swaves.
Using a regionalization that divides our study area into a northern half and a southern half centered on 28.1°N,
the mean t* for P waves is 0.043±0.0025 s beneath Nepal and 0.078±0.0026 s beneath the Tibetan Plateau
(Tethyan Himalaya). For S waves the variation is similar, 0.053±0.0032 s under Nepal and 0.120±0.0036 s be-
neath the Tibetan Plateau. Raypaths and path-averagedQ for a subset of the data are shown in Figure S2 in the
supporting information. Regionally averaged crustal Q at depth can be estimated by separating near-surface
attenuation (t*R) from path-averaged attenuation 1/Q, by inverting

t�n ¼ t�R þ τn
Q

� �
(3)

for t*R and (1/Q) from all measurements in a given region, where t*n is the t* estimate from the nth raypath
and τ n is the corresponding travel time. The parameter t*R approximates attenuation contributions common
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Figure 4. Seismic moment (N-m) from spectral modeling (this paper) versus seismic moment from moment tensor inversion [de la Torre
et al., 2007] for 15 earthquakes common to both studies. Dashed lines represent best fit between spectral modeling and moment tensor
derived seismic moment for P waves (blue) and S waves (red). Solid diagonal line represents 1:1 ratio.
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to all paths in a region, such as near-surface effects [Stachnik et al., 2004]. Results of this analysis are given in
Table 1. We observe some differences between different regional subsets including thatQ is higher for south-
ern than northern paths (with the exception of QP for southern paths), and Q is lower for deeper events
(indicating that Q decreases with increasing depth). In addition QP/QS is less than 1 for all regions.

4. Tomography

To better map out our observed variations in attenuation we invert the t* estimates tomographically for 2-DQ
variations in the crust and upper mantle. We focus on the variations in structure approximately normal to the
Himalayan Arc and compare to a 2-D velocity model along this same transect [Monsalve et al., 2008]. In order
to compare the results of QP to QS, we use a subset of P and Swave spectra with common event-station paths.
We assume the linear relationship between t* and 1/Q:

t�n ¼ ∑τnm=Qm (4)

where t*n is the nth t* observation, τnm is travel time determined from the 1-D velocity models of Monsalve
et al. [2006] and 1/Qm is attenuation in themth block. We invert for 1/Qm via truncated singular value decom-
position using the algorithm of Boyd et al. [2004]. We experimented with different singular value truncations
to optimize the variance reduction, resolution, and model variance, and in the final models retain singular
values that are larger than 5% of the largest value. Inverse squared standard deviations of the t* estimates
from fits to equation (2) are used as the data weights, W.

We constructed the tomography for a 300 km (east–west) by 400 km (north–south) by 96 km (depth) volume
centered at station RBSH (28.195°N, 86.828°E) (Figures 1 and S1). A two-dimensional inversion is performed to
examine variations in attenuation parameters with latitude and with depth. Trade-off curves between misfit
and model resolution show that the block dimensions that generate the greatest variance reduction with a
high resolution are 40 km in the horizontal direction (north-south) and 24 km in the vertical direction. Using
the sliding bin algorithm [Boyd et al., 2004], we offset the blocks by 20 km in the horizontal and 12 km in the
vertical and reran the inversion, for a total of four inversions. Results from the inversions are combined into
one model,m1. To test the sensitivity to raypaths, we ran the tomographic inversion for each phase (P and S)
using two different input velocity models corresponding to different parts of the region [Monsalve et al.,
2006]. As a way to investigate ability to recover anomalies, we tested how well the data kernel matrix could
reproduce a synthetic model with high attenuation blocks in the south and north (Figure 5). Approximately
82% of the synthetic model amplitude was recovered.

Patterns in the tomographicQmodels (Figure 6) are consistent with attenuation variations observed from the
path averages (Table 1). The obtained Q structures show little dependence on the velocity model used for ray
tracing. QP and Qs show similar spatial variations, even though the data sets are independent and inverted
separately, lending support to the robustness of the images.

The India crust beneath Nepal, including the Lesser Himalaya, shows low attenuation (QP and QS≥ 2000) with
values from 500–1000 along the Main Himalayan Thrust (MHT). The middle to lower crust between the High

Table 1. Path-Averaged Q Estimatesa

South Paths North Paths

Event Depths t*R (s) ± (s) Q t*R (s) ± (s) Q

P waves
<50 km 0.024 0.002 1386 0.03 0.005 792
> 50 km 0.012 0.003 2280 0.025 0.007 493

S waves
< 50 km 0.048 0.003 5528 0.03 0.007 859
> 50 km 0.027 0.004 3145 0.086 0.022 519

aNorth/south path comparisons for t*R and Q calculated by regression for earthquakes at depths< 50 km and≥ 50 km. Mean fre-
quency bounds were 1.0–13.1 Hz for P and 0.7–11.2 Hz for S. Station RBSH (Figure 1) demarcates north versus south estimates.
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Himalaya and southern Tibetan Plateau shows relatively high attenuation (QP and QS≤ 500). The crust of the
southern Tibetan Plateau at depths 20–60 km shows a high attenuation zone for P and S (Q≈ 500).

5. Discussion

We observe that P and S waves are significantly more attenuated as they pass through the crust beneath the
High Himalaya and the southern Tibetan Plateau (Tethyan Himalaya) than signals that travel through the
crust beneath the Lesser Himalaya and Ganges Plain. To the south, within the Lesser Himalaya, the greatest
seismic wave attenuation (lowest QP and QS) is found along and within the footwall of the Main Himalayan
Thrust (MHT). In the uppermost mantle beneath the high Himalaya, high QP and QS are found, and the region
is brittle enough to produce earthquakes [Monsalve et al., 2006]. The factor of 10 variations suggest a first-
order influence of temperature variations, perhaps accompanied by melt. Our interpretations are illustrated
in Figure 7. The variations in VP/VS from the velocity tomography of Monsalve et al. [2008] provide comple-
mentary information and are interpreted along with our attenuation models.

Figure 5. (a) Synthetic model of 1000/Q with high-attenuation blocks in the south (left) and north (right). (b) Recovery of synthetic model
using P wave travel paths. (c) Recovery of synthetic model using S wave travel paths.
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Figure 6. Tomographic 1000/Q cross sections at longitude 86.5°E. Center point of cross section is at latitude 28.1°N and south is left; (a)
1000/QP using the Nepal velocity model [Monsalve et al., 2006]. See Figure S2 for ray coverage from deep earthquakes; (b) 1000/QP using
the Tibet velocity model [Monsalve et al., 2006]; (c) 1000/QS using the Nepal velocity model; (d) 1000/QS using the Tibet velocity model.
Shallow-dashed line denotes the Main Himalayan Thrust (MHT), solid line denotes crust-mantle boundary (Moho) [Schulte-Pelkum et al.,
2005]. Black-dashed lines at depth indicate contours of 90% resolution. Earthquakes are denoted by grey circles.
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Figure 7. Interpretive view of north-south variations in 1000/QP, 1000/ QS, and VP/VS. Topography along longitude 86.5°E is shown above
each plot and black triangles denote projected HIMNT station locations. Center point of cross section is latitude 28.1°N and south is left.
ABQT is alpha-beta quartz transition. (a) Interpretive diagram; (b) 1000/ QP; (c) 1000/ QS; (d) VP/VS from Monsalve et al. [2008].
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Elevated temperature can greatly decrease Q [e.g., Kampfmann and Berckhemer, 1985; Karato and Spetzler,
1990]. Recent comparisons show similar attenuation-viscosity relationships for many materials [McCarthy and
Takei, 2011; McCarthy et al., 2011], and viscosity is strongly temperature-dependent for virtually all rock
compositions [e.g., Kohlstedt et al., 1995], so it is likely that attenuation is as well. Because calibrations of at-
tenuation for crustal rocks remain incompletely understood, and bulk compositions are imperfectly known,
we provide only qualitative interpretations on thermal structure; the effects of pore fluid and melt further
complicate quantitative interpretations of Q.

Our favored interpretation for the lowQP, lowQS, and low VP/VS observed in themiddle and upper crust of the
Tethyan Himalaya is that it represents warm, felsic rock similar to that exposed in the Himalaya [Bollinger et al.,
2006; Yin and Harrison, 2000]. This interpretation is not only supported by the relatively low VP/VS ratio of 1.65
characteristic of quartz-rich rock [Christensen, 1996;Monsalve et al., 2008] but also by high heat flow [Jimenez-
Munt et al., 2008; Pollack et al., 1993]. These high temperatures are most likely sustained by radioactive heat
generation in an unusually thick crustal section. The variations in Q that we observe correlate well with an
independently determined model of temperature anomalies beneath the Himalaya and Tibet [Wang
et al., 2013].

We interpret the sharp increase in VP/VS ratio at 45 km below sea level (BSL) in the southern Tibetan crust as a
result of the alpha to beta quartz transition (ABQT) in felsic crustal rocks. Laboratory studies [e.g., Ohno et al.,
2006] indicate that the ABQT at 1 atm is marked by a sharp increase in VP/VS ratio, and Mechie et al. [2004]
have shown that the ABQT can be used as a crustal thermometer. In Figure 8, we show that typical felsic
granulite compositions [Mahan, 2006] yield calculated isotropic VP/VS ratios that increase from ~1.68–1.70 in
the alpha quartz stability field to ~1.78 in the beta quartz stability field for a linear thermal gradient from
Earth’s surface to 1.5 GPa and 1000°C. The velocities were calculated using the algorithm of Hacker and Abers
[2004] with an updated database that includes new elastic data for alpha quartz at elevated temperature
[Lakshtanov et al., 2007; Ohno et al., 2006], and elastic data at elevated pressure [Calderon et al., 2007] as-
sumed to scale with the pressure dependence of the ABQT. Phase abundances and compositions for the
granulite were calculated with Perple_X [Connolly and Petrini, 2002] version 7, the 2004 version of the Holland
and Powell [1998] database, and activity models in Hacker [2008], excluding melt.

For average crustal densities of 2800–3000 kg/m3, an ABQT at 45 km BSL (50 km beneath the surface) corre-
sponds to a pressure of 1400–1500 MPa; for the experimental determination of the ABQT of Shen et al. [1993]
this corresponds to a temperature of 933–958°C, with an uncertainty of ~5°C if pressure is known; 930–960°C
approximates this range. This high temperature in the midcrust is consistent with the inverted geotherm in
temperature models [Beaumont et al., 2004; Cattin and Avouac, 2000; Craig et al., 2012; Herman et al., 2010;
Wang et al., 2013] and, while warmer than the Nepal crust, demonstrates that the Southern Tibetan crust is

Figure 8. VP/VS versus depth for two felsic granulites. (a) Assumed thermal gradient and corresponding alpha-beta quartz transition of Shen
et al. [1993]. (b) Calculated VP/VS ratio versus depth for two felsic granulites [from Mahan, 2006]. Velocities calculated using the algorithm of
Hacker and Abers [2004].
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cooler than the central Tibetan crust where the ABQT is shallower [Mechie et al., 2004] and xenoliths imply
temperatures of 900–1100°C at 0.9–1.2 GPa [Hacker et al., 2000].

We find low crustal QP and QS values, less than 300 for frequency-independent measurements, at 45–50 km
BSL within the southern Tibetan crust. Because the lowest Q patch (< 200) is bounded above and below by
higherQ, this attenuation anomaly can have a purely thermal origin only if there is a thermal maximum in the
crust at this depth. Another possible source for the low Q at 45–50 km BSL is aqueous fluid ponded beneath
the ABQT. Laboratory studies have shown that the transition from alpha to beta quartz at 1 atm is marked by
an approximately threefold increase in porosity and permeability [Glover et al., 1995; Lin, 2002;McKnight et al.,
2008]. Thus, the α-β quartz transitionmay act as a reservoir for fluid or melt, and the alpha quartz above it may
form an impermeable cap. We speculate that the similar values for QS and QP reflect rough equivalence of
processes that reduce shear modulus, such as diffusion-accommodated grain-boundary sliding [Faul et al.,
2004], and dilatational anelasticity processes that affect the bulk modulus and thus VP [Green and Cooper,
1993]. Galvé et al. [2006] also reported high attenuation in the lower crust of the Tibetan Plateau. Beyond the
Himalayan orogen and Tibetan Plateau, the places that the ABQT can be observed in the Earth’s crust may be
few, as it requires thick, hot, felsic crust. A recent study by Kuo-Chen et al. [2012] reports evidence for the
ABQT beneath the Central Range of Taiwan from VP/VS tomography, suggesting a high geothermal gradient
beneath the orogen.

An unusual region of modestly high attenuation with low VP/VS (Figure 7) and high electrical conductivity
[Unsworth et al., 2005] lies within the subducting Indian crust 20–30 km deep beneath the Lesser Himalaya.
Aqueous fluids at high pore pressure might be a way to reconcile high electrical conductivity with low VP/VS
[e.g., Hauksson and Shearer, 2006;Makovsky and Klemperer, 1999;Matsubara et al., 2004; Nakajima et al., 2001;
Sato and Ito, 2002; Toksoz et al., 1979], because the relatively high compressibility of aqueous fluids relative to
rock leads to rapid bulk modulus reduction with increasing porosity [Takei, 2002]. High porosity also can
contribute to low QP and low QS [Winkler and Nur, 1979; Winkler and Murphy, 1995]. This mechanism is at-
tractive for the modestly low Q, low VP/VS zone in the footwall of the Main Himalayan thrust, and may also
play a role in the southern Tibetan crust. Such a region may be expected where subducting Indian crust
undergoes dehydration metamorphic reactions that release fluids at pressures of 0.7–1 GPa. Its persistence
suggests that such fluids do not migrate away rapidly.

We observe high values of QP and QS (low attenuation) in the uppermost mantle beneath the High Himalaya
and the Tethyan Himalaya. Mantle earthquakes have also been observed in this region [de la Torre et al., 2007;
Monsalve et al., 2006]. The high Q and presence of earthquakes is consistent with low temperatures and
hence brittle conditions. The strong temperature dependence of Q is found largely at temperatures> 950°C
in olivine aggregates [Faul and Jackson, 2005] and corresponds to Q generally lower than observed here
(>2000–4000, dominated by frequencies of 10–20 Hz). For frequencies of 15 Hz, a 1 mm grain size, and a
pressure of 1.5 GPa, the model of Faul and Jackson predicts QS> 2000 for olivine at temperatures< 1080°C.
We suspect that much higher QS is difficult to observe because other processes contribute to both intrinsic
absorption and scattering, so at best the Q data provide an upper bound on temperature. The presence of
seismicity at mantle depths probably requires significantly lower temperatures [e.g., Scholz, 1998]—less than
600°C if calibrations from oceanic mantle apply [McKenzie et al., 2005]. Still, the presence of the highest
Q values here supports the idea from other observations that the Indian lithosphere remains cold beneath
the Himalaya.

6. Summary and Conclusions

P and Swaves crossing southern Tibet lose significant energy over short distances. Much of this attenuation is
concentrated in the middle to lower crust beneath the High Himalaya and the southern Tibetan Plateau. At
midcrustal depths a sharp increase in VP/VS corresponding to a patch of very high attenuation is interpreted
as the alpha-beta quartz transition (ABQT) at 930–960°C. We interpret a patch of low QP and QS at 45–50 km
depth as fluid trapped by the porosity and permeability contrast associated with the ABQT. Farther south, a
region of moderately high attenuation but low VP/VSmay represent a local zone of aqueous fluid produced by
dehydration of subducting Indian crust. At greater depth, the combination of high Q for P and S waves be-
neath the Lesser Himalaya along with regions of high seismicity confirms that the upper mantle of the India
Plate is cold and brittle.
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