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Monazite U–Pb and trace-element data were gathered from six high- to ultrahigh-pressure (UHP) samples from
the Western Gneiss Region, Norway, using LASS (laser-ablation split-stream ICP-MS) to investigate variations in
monazite composition during high-pressure metamorphism. The UHP monazites were found to contain up to
7600 ppm Sr, 110 ppm non-radiogenic Pb, relatively weak negative Eu anomalies, and Y concentrations as low
as 500 ppm. Amphibolite-facies monazite that rims the UHP monazite in one sample contains Y concentrations
up to 1.6 wt.%, Sr as low as 13 ppm, and no detectable non-radiogenic Pb. The UHP monazite composition
(high Sr–Pb) is interpreted to result from growth in the absence of feldspar, possibly aided by increased
compatibility of Sr–Pb–Eu2+ in the monazite crystal structure at high pressure. Sr in monazite as a proxy for
feldspar stabilitymay be a useful tool not only in studying high-pressuremetamorphism, but also in determining
timescales of melting and crystallization, when the amount of feldspar changes over time.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The development and application of in situ analytical techniques
(laser-ablation ICP-MS, ion microprobe, and electron microprobe) for
U/Th–Pb dating has resulted in dramatic progress in our ability to under-
stand and unravel the complexity of mineral histories chiefly because
these techniques allow us to quantify trace-element compositions and
U/Th–Pb dates from the same volume of material. Attempts to tie radio-
metric dates to petrologic conditions (i.e., “petrochronology”) have been
both quantitative and qualitative.

For monazite, quantitative approaches include monazite–quartz
oxygen-isotope thermometry (Breecker and Sharp, 2007; Rubatto
et al., 2014) and monazite–xenotime and monazite–garnet thermome-
try (Gratz and Heinrich, 1997; Heinrich et al., 1997; Pyle et al., 2001;
Seydoux-Guillaume et al., 2002; McFarlane et al., 2005; Krenn and Fin-
ger, 2010). However, difficulty in assessing equilibrium (e.g., Berger
et al., 2005) and poorly understood activity–composition relations due
to the many end-member compositions of monazite solid solutions,
often necessitate qualitative approaches. These approaches use trace-
element patterns along with in situ mineral relationships (particularly
inclusion relationships) to tie the time of accessory-phase (re)crystalli-
zation to the presence/absence ormode of otherminerals. Formonazite
of California, Santa Barbara, CA

).
dating, the most-common approach is to interpret Y and heavy rare-
earth element (HREE) depletion as reflecting (re)crystallization in the
presence of garnet (e.g., Zhu and O'Nions, 1999; Foster et al., 2000;
Foster et al., 2002; Rubatto et al., 2013; Stearns et al., 2013). The Eu
anomaly in monazite has been suggested as a qualitative monitor of
rock feldspar content (Nagy et al., 2002; Rubatto et al., 2013) although
this interpretation is complicated by the sensitivity of Eu2+/Eu3+ ratios
to ƒO2 (Wilke and Behrens, 1999; Aigner-Torres et al., 2007).

Only two studies have discussed the composition of demonstrably
high-pressure monazite (Vaggelli et al., 2006; Finger and Krenn,
2007). This study aims to further understand the relationship between
trace elements in monazite and the petrologic conditions at which
monazite may (re)crystallize, by examining monazite from ultrahigh-
pressure rocks (2.5–3.5 GPa) in the Western Gneiss region, Norway.
This is an ideal place to examine the influence of high-pressure
metamorphism on monazite composition, because both the timing
and spatial extent of UHP metamorphism have been well documented
(Fig. 1). We argue that high-Sr and common-Pb concentrations in
monazite are indicative of (re)crystallization at (U)HP.

2. The Western Gneiss region, Norway

TheWestern Gneiss region (WGR: Fig. 1) is part of the Scandinavian
Caledonides, an orogenic belt that formed from the collision of Baltica
and Laurentia between 500 and 375 Ma (e.g., Corfu et al., 2014
and references therein). The terrane contains rare but widespread
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Fig. 1. Simplified geologic map and summary of geochronology used to constrain the timing of eclogite-facies/UHPmetamorphism (420–400Ma) and amphibolite-facies metamorphism
(400–380 Ma). The monazites in this study with high Sr and non-radiogenic Pb have U–Pb dates compatible with UHP metamorphism. Lu–Hf isochrons are from Kylander-Clark et al.
(2007, 2009). Sm–Nd isochrons from Mørk and Mearns (1986), Mearns (1986), Carswell et al. (2003b), and Kylander-Clark et al. (2007, 2009). TIMS U–Pb zircon dates from eclogites
from Carswell et al. (2003a), Root et al. (2004), Young et al. (2007), and Krogh et al. (2011). TIMS U–Pb zircon dates from leucosomes and pegmatites from Krogh et al. (2011), Vrijmoed
et al. (2013), andKylander-Clark andHacker (2014). LA–ICP-MSU–Pb zircon dates from leucosomes and pegmatites fromGordon et al. (2013) andKylander-Clark andHacker (2014). LA–
ICP-MSU–Pb titanite dates from Spencer et al. (2013). Ar–Arwhite-mica dates and contours fromRoot et al. (2004), Hacker et al. (2010), andWalsh et al. (2013). SIMSU–Pbmonazite date
from Terry et al. (2000b). Inset abbreviations: LGFC: the Lærdal–Gjende Fault Complex; MTFZ: Møre–Trøndelag Fault Complex; NSDZ: Nordfjord–Sogn Detachment Zone; RD: Røragen
Detachment. Modified from Kylander-Clark and Hacker (2014).
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eclogite-facies metamorphic rock and preserves three to four discrete
domains that show evidence for UHP (coesite-stable) peak metamor-
phic conditions of 2.5–3.2 GPa and 650–800 °C (e.g., Cuthbert et al.,
2000; Terry et al., 2000a; Root et al., 2004; Hacker, 2006). The onset
of continental subduction in the WGR occurred around 430 Ma
(e.g., Andersen et al., 1990; Kylander-Clark et al., 2009), and led to the
subduction of the Baltica margin to mantle depths (Andersen et al.,
1991; Hacker and Gans, 2005). The timing and duration of eclogite-
facies metamorphism has been constrained to 425–400 Ma by Lu–Hf
isochrons (Kylander-Clark et al., 2007; 2009) and TIMS U–Pb zircon
dates from eclogites across the region (Carswell et al., 2003a; Root
et al., 2004; Young et al., 2007; Krogh et al., 2011). Exhumation of the
UHP rocks to mid-crustal levels occurred shortly after 400 Ma as deter-
mined by TIMS and LA–ICP-MSU–Pb zircon fromdiscordant leucosomes
and pegmatites (Krogh et al., 2011; Vrijmoed et al., 2013; Gordon et al.,
2013; Kylander-Clark and Hacker, 2014), LA–ICP-MS U–Pb titanite from
Western Gneiss Complex and hornblende–plagioclase leucosomes
(Spencer et al., 2013), and Ar–Ar white-mica dates (Root et al., 2004;
Hacker et al., 2010; Walsh et al., 2013).

3. Analytical methods

3.1. Electron-beam methods

Monazite grains were identified through back-scattered electron
microscopy and energy-dispersive spectroscopy on a FEI Q400f
FEG scanning electron microscope at the University of California,
Santa Barbara (UCSB). X-ray maps of the grains were produced on a
Cameca SX-100 electron microprobe at UCSB. Quantitative analyses
of sample A grain 1 and of all major phases in samples A and B were
also conducted on the microprobe. Details of these analyses are de-
scribed in Appendix 1 and the data is reported in the Supplementary
material.

3.2. Pseudosection modeling

Pseudosections of samples A and B were calculated using Perple_X
(Connoly and Petrini, 2002) and the internally consistent thermody-
namic database of Holland and Powell (2011), to assess whichminerals
may have been present during (U)HPmonazite recrystallization. Details
of this procedure are outlined in Appendix 2.

3.3. Laser-ablation split-stream (LASS) petrochronology

All grains were dated using by LASS (laser-ablation split-stream
inductively coupled plasma mass spectrometry) using the Nu Plasma
HR multi-collector and either the Nu AttoM high-resolution single-
collector or the Agilent 7700S quadrupole ICP-MS at UCSB. Details of
this method are described by Kylander-Clark et al. (2013). Specifics of
the analyses in this study are described in Appendix 3 and the data
are located in the Supplementary material.
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4. Samples

Six samples were studied. Two samples examined in most detail
are presented in the text. The remaining 4 samples are reported in
Appendix 4.

4.1. Sample A

(8828A5; Figs. 2 and 3) is a kyanite–garnet–white-mica–biotite
quartzofeldspathic gneiss in the Western Gneiss Complex on Leinøya,
in the center of the Sørøyane UHP domain; the gneiss outcrop contains
blocks of eclogite. Major-element zoning in garnet is nearly homoge-
neous and shows evidence for resorbtion. Kyanite is also strongly re-
sorbed. Biotite occurs in two habits: primarily tabular, large (~500 μm)
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the latter texture is interpreted as crystallization from a melt (Cesare,
2008). Titanite from nearby outcrops is 395–393 Ma (Spencer et al.,
2013) and mica from this outcrop is 385 Ma (Walsh et al., 2013). The
presence of eclogite within this outcrop and the location of this outcrop
in the center of the Sørøyane UHP domain are compatible with this rock
having been to UHP; the pseudosection in Fig. 2 suggests that the UHP
assemblage was garnet–omphacite–phengite–kyanite–coesite.

4.2. Sample B

(8910A3; Fig. 4) is a biotite–plagioclase–quartz gneiss in theWestern
Gneiss complex on Stadlandet in the Nordfjord UHP domain; the gneiss
outcrop contains blocks of eclogite. The rock also contains minor
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pl+qtzpl+qtz

btbt

Sample BSample B 0.5 m
m

0.5 m
m

50 um50 um

1 mm1 mm
crn+plcrn+pl

polyc. qtzpolyc. qtz

mu mu gt cpx ky q

mu mu cpx 
ky q 

mu cpx ky 
law q 

mu cpx ky 
law coe 

mu mu cpx ky law q 

mu cpx ky q w 

mu gt cpx ky q

pl mu mu gt cpx ky q
pl mu gt cpx ky q

UHP: 
mu cpx ky coe w 

mu gt cpx ky q w

600 700 750550 T(C)   
1.5

1.8

2.1

2.4

2.7

3.0

P
(G

P
a)  

pl out
A CB

Fig. 4. A) Photomicrograph of sample B with inset back-scattered electron image showing a corundum-plagioclase symplectite. B) Cross-polarized light photomicrograph of a large
polycrystalline quartz aggregate surrounded bypalisade quartz, interpreted to be a pseudomorph after coesite. C) Pseudosection showingwhatwas likely the stablemineral assemblage at UHP.

102 R.M. Holder et al. / Chemical Geology 409 (2015) 99–111
amphibole and garnet (1 grain ~100 μm, strongly resorbed). Textural and
chemical disequilibrium is evident frommm-scale corundum–plagioclase
symplectites and polycrystalline quartz mantled by palisade quartz. The
corundum–plagioclase symplectites are likely decompression-related
pseudomorphs after kyanite ± omphacite (Möller, 1999; Nakamura and
Hirajima, 2000; Baldwin et al., 2015). The presence of coesite–eclogite
within a few kilometers of this outcrop, the outcrop location in the
Nordfjord UHP domain, and the presence of pseudomorphs after coesite
are compatible with this rock having been to UHP: the pseudosection
in Fig. 4 suggests that the stable UHP assemblage was omphacite–
phengite–kyanite–coesite ± minor garnet. Titanite from granodioritic
gneiss nearby is 404–393Ma (Spencer et al., 2013) andmica fromnearby
is 389–374 Ma (Walsh et al., 2013).

5. Results

5.1. Intercept dates

The monazites presented here contain domains that yielded
clustered, discordant U–Pb isotopic ratios.We interpret the discordance
to be from non-radiogenic Pb (not inheritance from partial sampling of
an older domain or Pb loss) for two reasons: the discrete groups of
discordant analyses correlate with other chemical zoning (Figs. 6–9),
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Pb in the monazites.
and there is a negative correlation between discordance and baseline-
corrected 206Pb/204Pb cps (Fig. 5). In order to calculate dates for these
discordant analyses, an upper intercept needs to be fixed in Tera–
Wasserburg space (so-called intercept date or “207Pb-corrected
206Pb/238U date”). To do this, we used the 207Pb/206Pb ratio of biotite
in each sample as a proxy for the whole-rock Pb-isotope composition
(Supplementary material). It is possible that the monazites inherited
some of their common Pb from a radiogenic source, such as allanite or
apatite (Romer and Siegesmund, 2003). There are no reaction textures
to suggest that this happened, but if so, the calculated intercept dates
would be slightly younger.

Dates in this paper are presented in the format A ± B [C]. A is the
mean calculated date of a group of analyses, B is the 2σ standard error
of that mean, and C is the long-term reproducibility of laser-ablation
monazite dates determined empirically at the UCSB LA-ICP-MS facility
(2% or ~8 Ma for 400 Ma samples; Hacker et al., in press).

5.2. Sample A

Two monazites from this sample were examined in detail in thin
section. Grain 1 (Figs. 6, 7) is a hypidioblastic, 400-μm grain adjacent
to quartz, plagioclase, and biotite. X-raymaps of Y, Sr, Th, and Nd reveal
four compositional domains: a sector-zoned core and twomantles with
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high Sr and low Y concentrations and a rimwith high Y and low Sr con-
centrations. U–Pb isotopes and REE were measured by LASS; Y and Sr
were measured by electron microprobe. The core and mantles yielded
discordant analyses, with intercept dates of 405.8 ± 3.3 [8] Ma
(MSWD = 0.94, n = 71), 397.5 ± 2.7 [8] Ma (MSWD = 1.2, n = 10),
and 393.4 ± 0.6 [8] Ma (MSWD = 0.82, n = 71). The rim yielded con-
cordant to near-concordant isotopic ratios with a mean 206Pb/238U date
of 387.2 ± 1.4 [8] Ma (MSWD= 1.8, n= 17). The core contains 0.16 to
0.24 wt.% Sr, 0.70 to 0.90 wt.% Y, and 23 to 107 ppm non-radiogenic Pb.
The innermantle contains 0.49 to 0.53wt.% Sr, 0.80 to 1.0wt.% Y, and 19
to 46 ppm non-radiogenic Pb. The outer mantle contains 0.04 to 0.18
wt.% Sr, 0.05 to 0.46 wt.% Y, and 1 to 15 ppm non-radiogenic Pb. The
rim contains 13,600 to 16,000 ppm Y and 0 to 3 ppm non-radiogenic
Pb; Sr is below the EPMA detection limit (50 ppm).

Grain 2 (Figs. 8, 9) is a xenoblastic, 300-μm grain surrounded by bi-
otite. X-ray maps of Y, Sr, Th, U, and Pr show two main compositional
zones in the grain: a core with high Sr and low Y concentrations and a
rim with high Y and low Sr concentrations. All quantitative analyses
were done by LASS. The core of the grain yielded discordant analyses
with an intercept of 391.0 ± 0.8 [8] Ma (MSWD = 2.0, n = 120). The
rim analyses are nearly concordant, with an intercept of 377.5 ± 6.1
[8] Ma (MSWD = 6.5, n = 6). The core has 1900 to 4000 ppm Sr, 600
to 850 ppm Eu, 700 to 7000 ppm Y, and 4 to 43 ppm non-radiogenic
Pb; in contrast to the rim which has 13 to 80 ppm Sr, 550 to 640 ppm
Eu, 7500 to 14,000 ppm Y, and 1 to 4 ppm non-radiogenic Pb.
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5.3. Sample B

One hypidioblastic, 300-μm grain adjacent to plagioclase and biotite
in thin section was examined (Figs. 10, 11). X-ray maps of Th, Y, U, and
Pr show an embayed core, a mantle, and four b20-μm Y-rich domains
that appear to be compositionally related to a thin discontinuous rim
(b5 μm). The thin section peeled off of its glass slide before X-ray
maps of Sr zoning could be made. All quantitative analyses were done
by LASS. The core of the grain yielded an intercept date of 410.7 ± 1.7
[8]Ma (MSWD=0.9, n=16). Themantle of the grain gave an intercept
date of 398.0±1.1 [8]Ma (MSWD=1.5, n=62). One analysis partially
sampled one of the small, Y-rich domains in the interior of the grain, but
its U–Pb isotopic ratios are indistinguishable from the mantle. The core
has 4200 to 7600 ppm Sr, 1300 to 2600 ppmY, 830 to 1300 ppmEu, and
24 to 41 ppm non-radiogenic Pb. The mantle has 2500 to 5500 ppm Sr,
1700 to 3700 ppm Y, 800 to 1400 ppm Eu, and 7 to 22 ppm non-
radiogenic Pb. The small Y-rich domain that was partially sampled
contained 9300 ppm Y. The rim was too thin to analyze.

6. Discussion

6.1. Relationship between monazite dates and UHP metamorphism

The monazite dates from sample A can be tied to UHP with both
the trace-element compositions and the U–Pb dates. Low-Y–HREE
405.8 ± 3.3 [8] Ma
MSWD = 0.94

n = 71 397.5 ± 2.7 [8] Ma
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HP core and mantles of the grain contain lower HREE concentrations, weaker negative Eu
plementary material for monazite Sr microprobe analyses.
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monazite cores are interpreted as having (re)crystallized in the pres-
ence of garnet, a stable UHP phase in this rock (Fig. 2). Likewise, the
high-Y–HREE rims of the grains are compatible withmonazite (re)crys-
tallization during or after garnet breakdown (lower-P). In addition, the
intercept dates of the cores coincidewith the established timing of UHP
metamorphism (Fig. 1), whereas the dates from the rims are distinctly
post-UHP.

Unlike sample A, themonazite from sample B has little trace-element
variation except for a few small domains with high Y. This may be be-
cause this rock did not have garnet at peak-pressure (Fig. 4) or because
the amount of garnet was small (b1.5 modal % is predicted over the PT
range modeled). The most-reliable indication that the monazite from
sample B (re)crystallized at UHP is that the dates coincide with the
timing of UHP as determined by dating of eclogites within the UHP
domain nearby (Lu–Hf isochrons, and TIMS U–Pb zircon; Fig. 1).

6.2. Sr, Eu, and common Pb in monazite

High-Sr, low-Y monazites have been found in both the Bohemian
Massif (Finger and Krenn, 2007) and in the Dora Maira Massif
(Vaggelli et al., 2006), both of which experienced UHPM. The high-Sr
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monazites from Dora Maira (1000–3000 ppm Sr) are inclusions in py-
rope megablasts from whiteschists within the Brossasco–Isasca Unit.
The high-Sr monazites from the Bohemian Massif (1.7 wt.% Sr) are in-
clusions in garnet in a N60% garnet rock from the Podolsko Complex.
The authors interpreted the elevated Sr to be a result of high-pressure
plagioclase breakdown that released Sr.

At normal crustal pressures, larger negative Eu anomalies in
monazite have been related to the growth of feldspar from melt (Nagy
et al., 2002; Rubatto et al., 2013). However, this interpretation is compli-
cated by the sensitivity of Eu2+/Eu3+ ratios to ƒO2 (Wilke and Behrens,
1999; Aigner-Torres et al., 2007), whichmay not be constant, especially
in magmatic environments.

It is commonly assumed that monazite does not incorporate signifi-
cant Pb during crystallization (e.g., Parrish, 1990; Suzuki and Adachi,
1991). Although many monazite dates are concordant or near-
concordant, monazites routinely yield at least some, and occasionally
only, discordant data. This is especially pronounced in Cenozoic rocks
in which little radiogenic Pb has accumulated (e.g., the hydrothermal
monazites of Janots et al., 2012; the metamorphic monazites of
Mottram et al., 2014), but some older monazites also show isotopic
ratios that are dispersed from concordia toward common-Pb (e.g.,
2σ
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Broussolle et al., 2015). Furthermore, monazites that were originally
concordant can become discordant by alteration in the presence of
low-temperature hydrothermal fluids (b400 C; Poitrasson et al., 2000;
Seydoux-Guillaume et al., 2012). A key difference between this study
and the studies mentioned above is that the non-radiogenic Pb in the
monazites of this study is concentrated in specific zones with distinct
trace-element characteristics.

High Sr–Eu–Pb in the high-pressuremonazites from this study could
be the result of two different mechanisms: 1) increased partitioning of
Sr–Eu2+–Pb into monazite due to a phase change, such as the loss of
feldspar (Finger and Krenn, 2007) or another phase that partitions
Sr–Eu2+–Pb strongly (Ewart and Griffin, 1994; Bindeman et al., 1998;
Spandler et al., 2003; Aigner-Torres et al., 2007) or 2) increased compat-
ibility of Sr–Eu2+–Pb in the monazite crystal structure at high pressure
regardless of the stability of other minerals.
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norm
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I chondrite

Fig. 11. U–Pb concordia diagram and REE plot from LASS analyses of the large monazite inve
comparison. All analyses are interpreted to be UHP. They have high Sr concentrations and mod
In sample A, the Sr concentrations vary by more than two orders of
magnitude (13 to 5300 ppm), suggesting that a change in compatibility
is unlikely to be the only cause of the compositional range observed. The
most-important phase changes observed in the modeling of samples A
and B are the breakdown of feldspar and biotite and the growth of
clinopyroxene and (additional) white-mica (Figs. 2, 4). Biotite and
white-mica have a similar crystal structure, so the loss of feldspar
probably has a larger effect on the Sr–Eu2+–Pb budget of the rock. We
therefore interpret the high Sr–Eu2+–Pb monazites to reflect (re)crys-
tallization in the absence of feldspar, although increased compatibility
of Sr–Eu2+–Pb in monazite at UHP may also play a role.

7. Conclusions

Proximity to eclogites in the field, measured U–Pb dates, and HREE
compositions indicate monazite recrystallization at UHP. These UHP
monazites are characterized by high Sr (thousands of ppm) and non-
radiogenic Pb (up to 100ppm) aswell asweaker negative Eu anomalies.
Elevated Sr–Eu2+–Pb in the UHP monazites may be the result of the
feldspar instability at pressures above 1.5 GPa and/or increased compat-
ibility of Sr–Eu2+–Pb into monazite. If Sr in monazite is controlled
primarily by the stability of feldspar, it should provide a useful tool
not only in identifying the timing of high-pressure metamorphism,
but also in determining timescales of melting and crystallization in
high-temperature metamorphic environments.
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Appendix 1. Characterization of monazites by electron microprobe

Monazite grains were identified through back-scattered electron
microscopy and energy-dispersive spectroscopy on a FEI Q400f FEG
scanning electron microscope at the University of California, Santa
Barbara (UCSB). Different chemical domains in monazite were charac-
terized with X-ray maps of Y, La, Nd, Pr, Th, U and Sr created using a
Cameca SX-100 electron microprobe at UCSB. The maps were
440 420 400 3805

13

398.0 ± 1.1 [8] Ma
MSWD = 1.5

n = 62

 410.7 ± 1.7 [8] Ma
MSWD = 0.86

n = 16

2σ

1714 238 U / 206 Pb

stigated in sample B. Y, Sr, and Ca have been added to the typical REE diagram for easy
erate HREE concentrations except for one analysis with higher HREE.
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constructed using an accelerating voltage of 15 keV, a 200 nA beam
current, a 0.5–1 μm/pixel step size, and a dwell time of 0.2 s.

Quantitative compositional analyses of 1monazite grain in Sample A
were conducted on the Cameca SX-100 electron microprobe at UCSB
using an accelerating voltage of 15 keV, current of 200 nA, on-peak
count-times of 20 s, and off-peak count-times of 10 s on both sides of
the peaks. The elements, X-ray lines, and standards measured are
shown in the Supplementary material. Monazite X-ray spectra are
notorious for having many interfering elements and so it is essential
to demonstrate that the Sr measured in sample A is actually Sr and
not an interference. To check this, a wavescan was taken across the Sr
peak on the unknown (Fig. A.1). The largest potential interference is
from La Lβ2 (iii order) which has a 21.4% interference with the mea-
sured Sr Lα (if there were 1 wt.% elemental Sr and 99 wt.% elemental
La, the measured Sr would be 1.214 wt.%, 21.4% higher than the real
amount). Based on the measured La concentrations (11.3–13.5 wt.%),
the Sr measurements are at most 0.026 wt.% over estimated from this
interference. There are also two Dy interferences: Dy Lβ1 (iv order) at
1305% and Dy Lβ4 (iv order) at 212%, but Dy concentrations are ubiqui-
tously low or below detection limit (0.01–0.02 wt.%) in the analyses
with high Sr and the analyses with higher Dy (0.34–0.44 wt.%) have Sr
concentrations below the detection limit, so these interferences are
not likely to have influenced the Sr measurements.

Appendix 2. Pseudosections

To evaluate what the equilibrium assemblages at UHP might have
been in samples A and B, pseudosectionswere calculatedwith Perple_X
(Connoly and Petrini, 2002) using the internally consistent thermody-
namic database of Holland and Powell (2011). Both of these samples
contain definitive disequilibrium textures (resorbed grains, evidence
for melt, symplectites, and pseudomorphs) and so the purpose of
these pseudosections is not to determine a detailed PT history, but rath-
er to estimate the peak-pressure equilibrium mineral assemblage with
which the monazites might have crystallized. The bulk-rock composi-
tions were determined using microprobe analyses of major phases
(garnet, biotite, and plagioclase; Supplementary material) whose
modes were estimated with ImageJ. The analyses were conducted
with a 200 nA beam current, an accelerating voltage of 15 keV, 30 s
on-peak count time, and a mean-atomic-number background correc-
tion. The bulk-rock compositions used in the pseudosections are
shown in the Supplementary material. Sample A was modeled with
H2O saturation,whereas sample Bwasmodeled using 1.2mol%H2O (es-
timated from the modal abundance of biotite), because the stability of
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Fig. A.1. Wavelength spectrum from sample A grain 1 across the Sr Lα peak showing
the positions and relative magnitudes of potential interferences in monazite. The Sr Lα
line defines an easily recognizable, discrete peak in monazites with high enough Sr
concentrations.
garnet in this rock is sensitive to H2O abundance. The stability of garnet
was also sensitive to FeO content; for example a change from 0.40 to
0.45 mol% FeO results in a ~0.5 GPa increase in the P stability of garnet.

Appendix 3. Laser-ablation split-stream (LASS) petrochronology

All grains were dated using the LASS (laser-ablation split-stream in-
ductively coupled plasmamass spectrometry) facility at UCSB. The facil-
ity consists of a Photon Machines 193 nm excimer laser with a HelEx
sample cell coupled to two mass spectrometers—a Nu Plasma HR
multi-collector ICP-MS and either a Nu AttoM high-resolution single-
collector ICP-MS or an Agilent 7700S quadrupole ICP-MS—allowing
simultaneous chronology and trace-element measurements (Kylander-
Clark et al., 2013). U, Th, and Pb isotopes were measured on the Plasma
HR, however only U–Pb dates are shown in the paper, because the
232Th/208Pb value of monazite reference material 44069 has not been
measured by isotope dilution. In samples A grain 1, C, D, E and F1, the
lanthanides were measured on the AttoM. In samples A grain 2, B and
F2, the lanthanides + Ca + Sr + Y were measured on the 7700S. The
analyses were obtained with a 7 or 10 μm laser spot, using a frequency
of 3 Hz, a 20 s ablation time, and an ablation rate of ~100 nm/pulse.
The final pit depths were ~6 μm.

All data were processed using Iolite version 2.3 (Paton et al., 2011),
which corrects for down-hole fractionation and machine drift using a
matrix-matched primary reference material (RM) interleaved with the
unknowns. The primary RM was 44069 monazite (Aleinikoff et al.,
2006) for U–Pb ratios, and Bananeira monazite (Kylander-Clark et al.,
2013; Palin et al., 2013) for trace elements. Bananeira monazite was
used as a secondary RM for U–Pb ratios to assess accuracy of the un-
known analyses, and additional uncertainty was added, in quadrature,
to each analysis to account for variation in secondary-RM isotopic ratios
within runs. The long-term reproducibility of secondary RMs indicate
that monazite U–Pb dates in the UCSB LA–ICP-MS laboratory have a
total uncertainty of ~2% (Hacker et al., in press) that must be used
when considering the absolute ages of the monazites reported herein.
Data were not corrected for common Pb, because the 204Pb + Hg signal
for the RMs was indistinguishable from background (although the
204Pb + Hg signal is distinguishable from background in unknown
analyses. See Fig. 5).

U–Pb data were evaluated using Isoplot (Ludwig, 2008). Trace ele-
mentswere normalized toMcDonough and Sun (1995) CI carbonaceous
chondrite values. HREE profiles become noisy as HREE concentrations
decrease, due to higher uncertainty and potentially from MREE-oxide
interferences. Although this influences the accuracy of the HREE
profiles at ppm-level concentrations, it does not influence our interpre-
tations, which are based on qualitative trace-element enrichment/
depletion.

Sr determination in monazite RMs

The elemental Sr concentrations in monazite RMs 44069 and
Bananeira are too low to be measured accurately and precisely by elec-
tronmicroprobe andwere estimated from ICP-MS analyses. LA–ICP-MS
analyses of the standard glasses NIST SRM 612 (Pearce et al., 1997;
Jochum et al., 2011) and MPI-DING StHs6/80-G, ML3B-G, and ATHO-G
(Jochum et al., 2006) show that Sr cps/ppm vs. Ca cps/ppm define a lin-
ear trend that projects through zero: Sr cps/ppm= 1.63 × Ca cps/ppm
(Supplementary material). When applied to the monazite RMs 44069
and Bananeira, for which the concentrations of Ca are known, this
relationship returns Sr concentrations of 28 ± 5 ppm for 44069 (n =
20, MSWD = 10.3) and 0.6 ± 0.1 ppm for Bananeira (n = 20,
MSWD=1.7) (uncertainties only include themean cps of the reference
material analyses). The MSWDs indicate that Bananeira has a more-
homogeneous Sr concentration than 44069, as is the case with REE
(Kylander-Clark et al., 2013). Because of the way that these values
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were calculated, the Sr concentrations in the unknowns are semi-
quantitative.

Appendix 4. Additional samples

Four additional samples were found to show similar U–Pb isotope
patterns to the samples discussed in the main text. Photomicrographs
of these additional samples are given in Fig. D.1. U–Pb and REE data
are shown in Figs. D.2 and D.3.

Sample C

(R9823A2): This rock is a kyanite–sillimanite–garnet quartzo-
feldspathic mylonite in the Blåhø nappe adjacent to the Hareidlandet–
Dimnøya eclogite (Mysen and Heier, 1971). Garnet is strongly resorbed,
and contains rutile + quartz inclusions. Kyanite is deformed, resorbed,
and overgrown by oriented and unoriented sillimanite. Fine-grained
biotite + plagioclase intergrowths were derived from either high-
pressure mineral decomposition or melting (Cesare, 2008); these are
strongly deformed.

Sample D

(P5624E): This rock is a garnet–biotite–muscovite–kyanite–
sillimanite quartzofeldspathic gneiss in the Western Gneiss complex
on Austefjord; the gneiss outcrop contains blocks of eclogite. Quartz
shows undulatory extinction and subgrain development. Garnets
are resorbed and broken. Biotite occurs in three habits: i) coarse
and parallel to the foliation, ii) concordant and discordant to the folia-
tion and intergrown with sillimanite and iii) very fine grained and
intergrown with very fine-grained quartz and/or feldspar; the
discordant grains with sillimanite are interpreted to reflect mica
dehydration melting, and the very fine intergrowth with biotite is
interpreted to reflect crystallization of a melt (Cesare, 2008). Resorbed
kyanite is also present. We interpret the assemblage in this rock as
representing post-UHP amphibolite-facies equilibration, melting, and
deformation.
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Fig. D.1. Photomicrographs of samples
Sample E

(E9817G8): This rock is a kyanite–garnet–staurolite–biotite gneiss
in the Blåhø nappe near Grotli (~50 km from the nearest coesite
eclogite); the gneiss outcrop contains blocks of eclogite. Staurolite
is euhedral. Garnet is euhedral–subhedral and resorbed with rutile
inclusions; other minerals are coarse. Minor sillimanite is present along
biotite grain boundaries.Minor chlorite is present in porphyroblast strain
shadows. Pressures and temperatures of 1.15GPa and 650 °Cwere deter-
mined for this outcrop using garnet–biotite and garnet–kyanite–quartz–
plagioclase equilibria (Walsh and Hacker, 2004). These PT conditions
were interpreted to be part of a regional post-UHP “supra-Barrovian”
metamorphic event, associated with stalling of the WGR at lower-
crustal depths during exhumation. Titanite from this region is Precam-
brian (Tucker et al., 1990) and muscovite from this outcrop is 393 Ma
(Walsh et al., 2013).

Sample F

(H3630B): This rock is a diamond-bearing kyanite–garnet–biotite
gneiss on Fjørtoft (Dobrzhinetskaya et al., 1995); it has been interpreted
as part of the Blåhø nappe by Terry et al. (2000a). In thin section, the
gneiss is composed of slightly resorbed garnets and bent kyanite in a
matrix of fine-grained feldspar, quartz, and biotite.

5. Results

Sample C
The analyses for sample C come from ten different matrix grains in

thin section. The grains have low-Y cores and rims of high-Y embay-
ments and fingers (Fig. D.2). The cores yielded discordant analyses
with an intercept date of 394.8 ± 1.2 [8] Ma (MSWD = 1.3, n = 22)
and low HREE concentrations, whereas the rims have a mean
206Pb/238U age of 390.0 ± 2.1 [8] Ma (MSWD = 2.5, n = 22) with
elevated HREE concentrations. Eu concentrations show no relationship
to U–Pb date (7–1060ppm in the rims vs 560–1150 in the cores). An ad-
ditional six discordant analyses from the cores are as old as 426.9 ± 5.6
stst
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[8] Ma and have the same REE patterns as the rest of the cores. The
concordant analyses have 0 to 2 ppm non-radiogenic Pb, whereas the
discordant analyses have 4 to 12 ppm non-radiogenic Pb.

Sample D
Data from sample D come from 13 grains in thin section with

homogenous, low-Y cores and thin (b5 μm) Y-rich rims. The rims
were not analyzed. The data from the cores form a single population
of discordant analyses with depleted HREE profiles, 16 to 39 ppm
non-radiogenic Pb, and an intercept date of 402.1 ± 0.7 [8] Ma
(MSWD= 0.7 n = 86) (Fig. D.2).

Sample E
Six monazites in thin section from sample E are characterized by

low-Y cores and high-Y rims. The data form a population of discordant
analyses with an intercept of 401.3 ± 2.7 [8] (MSWD = 0.4, n = 7)
and a cluster of concordant to near-concordant analyses with a mean
206Pb/238U date of 399.3 ± 2.3 [8] Ma (MSWD = 2.0, n = 28)
(Fig. D.2). The discordant analyses have 1100 to 1600 ppm Eu, depleted
HREE profiles, and 62 to 74 ppm non-radiogenic Pb. The concordant to
near-concordant analyses have 340 to 1700 ppm Eu, elevated HREE
profiles, and 0 to 11 ppm non-radiogenic Pb.

Sample F
N100 monazite grains in three thin sections were analyzed from

sample F. The monazite grains are b50 μm (often b30 μm), xenoblastic,
and commonly have Y-rich cores surrounded by Y-poor mantles. The
first thin section (F1) is typical of the outcrop, containing only garnets
b1 cm in diameter. The U–Pb dates can be divided into two broad
groups: Caledonian (dates from 430 to 390 Ma) and mixing between
Caledonian and Precambrian (1200–900 Ma) (Fig. D.3). The Precambri-
an dates correspond to the Y-rich cores of the grains and are not
discussed further. The Caledonian dates can be divided into three
groups based on chemistry and U–Pb date: 9 analyses with enriched
HREE profiles from monazites included in garnet yielded a date of
425.5 ± 3.0 [8] Ma (MSWD = 2.3); 13 monazite analyses from grains
in the matrix with depleted HREE yielded a date of 426.8 ± 1.7 [8] Ma
(MSWD=0.93); and 23 analyses from grains in thematrixwith deplet-
ed HREE yielded a mean intercept of 393.0 ± 3.0 [8] Ma, but consider-
able scatter in U–Pb ratios (MSWD = 7.7). The other two thin sections
(F2) define a transect across a 10 cm garnet. No relationship between
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the positions of themonaziteswithin the garnet andU–Pb date or trace-
element compositions was found. The Caledonian dates can be divided
into three groups: concordant to near-concordant analyses at 431.1 ±
1.7 [8] Ma (MSWD = 1.7, n = 33 ta); analyses between 425 and
395 Ma with variable discordance; and concordant to near-concordant
analyses at 391.3± 2.7 [8]Ma (MSWD=2.3, n=16). The REE concen-
trations are highly variable but have no objective relationship to U–Pb
date. Non-radiogenic Pb is b10 ppm and Sr is b570 ppm in all analyses
except for 7 discordant analyses between 425 and 395Ma that have 750
to 1600 ppm Sr and 10 to 37 ppm non-radiogenic Pb.

Relationship between monazite dates from samples C–F and (U)HP
metamorphism

Themonazite dates from samples C, D, E can be tied to eclogite-facies
metamorphism with both the trace-element compositions and the U–
Pb dates. Low-Y–HREE monazite cores are interpreted as having (re)-
crystallized in the presence of garnet, which all samples contain and
was presumably stable at peak pressures. Likewise, the high-Y–HREE
rims of the grains are compatible withmonazite (re)crystallization dur-
ing or after garnet breakdown (lower P). In addition, the intercept dates
of the cores coincidewith the established timing of UHPmetamorphism
(Fig. 1), whereas the dates from the rims are more likely post-UHP.

Sample F contains monazite dates that span the duration of high-
pressure metamorphism. Sample F1 shows a clear transition from
HREE-enriched monazite included in garnet to HREE-depleted
monazite located in the matrix at 425 Ma, compatible with garnet
growth at that time. This is consistent with the timing of prograde
metamorphism in the region (Fig. 1). Sample F2 gave several discordant
analyses with higher Sr concentrations and intercept ages consistent
with the timing of UHP; however, because all of these analyses come
from monazites included within a single 10 cm garnet, the extent with
which monazite could equilibrate with the rest of the rock during re-
crystallization is unknown, making interpretation of the trace-element
signatures difficult. Both samples F1 and F2 have dates compatible
with the timing of exhumation and amphibolite-facies metamorphism,
but none of these analyses show the enrichment in HREE expected from
the breakdown of garnet during this process.
Appendix 5. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2015.04.021.
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