
Lecture 2 Intro to Heat Flow

Surface heat flow
Heat flux from the Sun (mostly reradiated): 400 W/m2

Heat flux from Earth’s interior: 80 mW/m2

Earthquake energy loss: 0.2 mW/m2

Heat flow from human?
energy intake: 2000 “calories” ≈ 8000 kJ (W = J/s)
8000 kJ / 24 hr = ~100 J/s = 100 W (1 day ≈ 80,000 s)
surface area: 2 m x 1 m = 2 m2

50 W/m2 ! — or one lightbulb

Types of Heat Transport
conduction
convection
radiation—electromagnetic radiation
advection

Relationship Between Heat Flow & T Gradient: Fourier’s Law
The rate of heat flow is proportional to the difference in heat between two bodies. A thin
plate of thickness z with temperature difference ∆T experiences heat flow Q:
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where k is a proportionality constant called the thermal conductivity (J/msK):
Ag 418
rock 1.7–3.3
glass 1.2
wood 0.1

We can express the above equation as a differential by assuming that z→0:
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 (We use a minus sign because heat flows from hot to cold and yet we want positive T to
correspond to positive x, y, z.)
In other words, the heat flow at a point is proportional to the local slope of the T–z curve
(the geotherm).
If the temperature is constant with depth (∂T/∂z = 0), there is no heat flow—of course!
Moreover, if ∂T/∂z is constant (and nonzero) with depth (T(z)=Tzo+mz), the heat flow will
be constant with depth; this is clearly a steady state.

Generalized to 3D, the relationship between heat flow and temperature is:
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i.e., the heat flow at a point is proportional to the local temperature gradient in 3D.

Relationship Between T Change and T Gradient: The Diffusion Equation
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Of course, if the heat flow is not constant with depth, the temperature must be changing.
The temperature at any point changes at a rate proportional to the local gradient in the
heat flow:
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So, if there is no gradient in the heat flow (∂Q/∂z = 0), the temperature does not change.
If we then stuff the equation defining heat flow as proportional to the temperature
gradient (Q = –k ∂T/∂z) into the equation expressing the rate of temperature change as a
function of the heat flow gradient (∂T/∂z α ∂Q/∂z), we get the rate of temperature change
as a function of the curvature of the temperature gradient (perhaps more intuitive than the
previous equation):
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And, in 3D, using differential operator notation (∇2 is known as ‘the Laplacian’):
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This is the famous ‘diffusion equation’. Wheee! It can be expressed most efficiently as
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where κ is the thermal diffusivity (m/s2):
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Heat Production: The Heat Production Equation
Rocks are radiogenic (to varying degrees), so we need some way of incorporating heat
generation. We will use A for heat generation per unit volume per unit time (W/m3 or
J/m3s). This adds a term to the diffusion equation, giving the ‘heat conduction equation’:
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Most of the heat generation in Earth is from the decay of 238U, 235U, 232Th, and 40K.
Radiogenic heat production (µW/m3) of some rocks (from Fowler, The Solid Earth):

granite 2.5
average continental crust 1
tholeiitic basalt 0.08
average oceanic crust 0.5
peridotite 0.006
average undepleted mantle 0.02

Calculating a Simple Geotherm Given a Surface Heat Flux & Surface T
With no erosion or deposition and a constant heat flux, a steady-state thermal gradient
can be established. By definition, at steady state
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and the heat conduction equation can then be simplified and re-arranged:
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in other words, the curvature of the geotherm is dictated by the heat production rate A
divided by the thermal conductivity k. Pretty simple. To calculate the geotherm, we
integrate the above equation, getting:
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We can evaluate C1 if we specify the surface heat flow, QS = k∂T/∂z, as a boundary
condition at z = 0:
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and integrating a second time gives:
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If the temperature at Earth’s surface is TS, C2 = TS. The geotherm is thus given by
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where A is the volumetric heat production rate and QS is the surface heat flow.

Calculating a Simple Geotherm Given a Basal Heat Flux & Surface T
Let’s calculate a geotherm dictated by a surface temperature and a basal (e.g., Moho) heat
flux at depth zM. We integrate once as above:
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and, if we set QM = k∂T/∂z at zM as a boundary condition, then
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Stuffing this back into the previous equation:
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If the temperature at Earth’s surface is TS, C2 = TS. The geotherm is thus given by
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where A is the volumetric heat production rate and QM is the basal heat flow at depth zM.
Note that this equation reveals that the basal heat flow contributes QMz/k to the
temperature at depth z.




