Lecture 2 Intro to Heat Flow

Surface heat flow

Heat flux from the Sun (mostly reradiated): 400 W/m^2 Heat flux from Earth's interior: 80 mW/m² Earthquake energy loss: 0.2 mW/m^2 Heat flow from human? energy intake: 2000 "calories" $\approx 8000 \text{ kJ}$ (W = J/s)
8000 kJ / 24 hr = ~100 J/s = 100 W (1 day $\approx 80,000 \text{ s}$) 8000 kJ / 24 hr $= \sim 100$ J/s = 100 W surface area: $2 \text{ m x } 1 \text{ m} = 2 \text{ m}^2$ 50 W/m² ! — or one lightbulb

Types of Heat Transport

conduction convection radiation—electromagnetic radiation advection

Relationship Between Heat Flow & T Gradient: Fourier's Law

The rate of heat flow is proportional to the difference in heat between two bodies. A thin plate of thickness *z* with temperature difference ∆*T* experiences heat flow *Q*:

$$
Q = -k\frac{\Delta T}{z}
$$
 units: W/m² or J/m²s

where *k* is a proportionality constant called the *thermal conductivity* (J/msK):

We can express the above equation as a differential by assuming that $z\rightarrow 0$:

$$
Q(z) = -k \frac{\partial T}{\partial z} \qquad \text{units:} \quad \frac{J}{m^2 s} = -\frac{J}{m s K} \frac{K}{m}
$$

 (We use a minus sign because heat flows from hot to cold and yet we want positive *T* to correspond to positive *x, y, z*.)

In other words, the heat flow at a point is proportional to the local slope of the *T–z* curve (the geotherm).

If the temperature is constant with depth $(\partial T/\partial z = 0)$, there is no heat flow—of course! Moreover, if $\partial T/\partial z$ is constant (and nonzero) with depth $(T(z)=T_{z0}+mz)$, the heat flow will be constant with depth; this is clearly a steady state.

Generalized to 3D, the relationship between heat flow and temperature is:

$$
Q = -k\nabla T = -k \left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} \right)
$$

i.e., the heat flow at a point is proportional to the local temperature gradient in 3D.

Relationship Between T Change and T Gradient: The Diffusion Equation

Of course, if the heat flow is *not* constant with depth, the temperature *must* be changing. The temperature at any point changes at a rate proportional to the local gradient in the heat flow:

$$
\frac{\partial T}{\partial t} = -\frac{1}{\rho C_P} \frac{\partial Q}{\partial z} \qquad \text{units:} \quad \frac{K}{s} = \frac{1}{\left(kgm^{-3}\right)\left(J/\,kgK\right)} \frac{J/m^2s}{m}
$$

So, if there is no *gradient* in the heat flow ($\partial O/\partial z = 0$), the temperature does not change. If we then stuff the equation defining heat flow as proportional to the temperature gradient ($Q = -k \frac{\partial T}{\partial z}$) into the equation expressing the rate of temperature change as a function of the heat flow gradient (∂*T/*∂*z* ^α [∂]*Q/*∂*z*), we get the rate of temperature change as a function of the curvature of the temperature gradient (perhaps more intuitive than the previous equation):

$$
\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \frac{\partial^2 T}{\partial z^2} \qquad \text{units:} \quad \frac{K}{s} = \frac{J/msK}{\left(kgm^{-3}\right)\left(J/kgK\right)} \frac{K}{m^2}
$$

And, in 3D, using differential operator notation (∇^2 is known as 'the Laplacian'):

$$
\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \nabla^2 T
$$

This is the famous 'diffusion equation'. Wheee! It can be expressed most efficiently as

$$
\frac{\partial T}{\partial t} = \kappa \nabla^2 T
$$

where κ is the thermal diffusivity (m/s²):

$$
\kappa = \frac{k}{\rho C_P}
$$

Heat Production: The Heat Production Equation

Rocks are radiogenic (to varying degrees), so we need some way of incorporating heat generation. We will use A for heat generation per unit volume per unit time (W/m³ or $J/m³s$). This adds a term to the diffusion equation, giving the 'heat conduction equation':

$$
\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \nabla^2 T + \frac{A}{\rho C_P}
$$

Most of the heat generation in Earth is from the decay of 238 U, 235 U, 232 Th, and 40 K. Radiogenic heat production $(\mu W/m^3)$ of some rocks (from Fowler, *The Solid Earth*):

Calculating a Simple Geotherm Given a Surface Heat Flux & Surface T

With no erosion or deposition and a constant heat flux, a steady-state thermal gradient can be established. By definition, at steady state

$$
\frac{\partial T}{\partial t} = 0
$$

and the heat conduction equation can then be simplified and re-arranged:

$$
\frac{k}{\rho C_P} \frac{\partial^2 T}{\partial z^2} = -\frac{A}{\rho C_P} \quad \text{or} \quad \frac{k}{\rho C_P} \nabla^2 T = -\frac{A}{\rho C_P}
$$

or:

$$
\frac{\partial^2 T}{\partial z^2} = -\frac{A}{k} \quad \text{or} \quad \nabla^2 T = -\frac{A}{k}
$$

in other words, the curvature of the geotherm is dictated by the heat production rate *A* divided by the thermal conductivity *k*. Pretty simple. To calculate the geotherm, we integrate the above equation, getting:

$$
\frac{\partial T}{\partial z} = -\frac{A}{k}z + C_1
$$

We can evaluate C_1 if we specify the surface heat flow, $Q_s = k \frac{\partial T}{\partial z}$, as a boundary condition at $z = 0$:

$$
Q_s = kC_1
$$
 or $C_1 = \frac{Q_s}{k}$

Stuffing this back into the previous equation:

$$
\frac{\partial T}{\partial z} = -\frac{A}{k}z + \frac{Q_s}{k}
$$

and integrating a second time gives:

$$
T = -\frac{A}{2k}z^2 + \frac{Q_s}{k}z + C_2
$$

If the temperature at Earth's surface is T_s , $C_2 = T_s$. The geotherm is thus given by

$$
T = -\frac{A}{2k}z^2 + \frac{Q_s}{k}z + T_s
$$

where A is the volumetric heat production rate and Q_S is the surface heat flow.

Calculating a Simple Geotherm Given a Basal Heat Flux & Surface T

Let's calculate a geotherm dictated by a surface temperature and a basal (e.g., Moho) heat flux at depth z_M . We integrate once as above:

$$
\frac{\partial T}{\partial z} = -\frac{A}{k}z + C_1
$$

and, if we set $Q_M = k \frac{\partial T}{\partial z}$ at z_M as a boundary condition, then

$$
\frac{Q_M}{k} = -\frac{A}{k}z + C_1 \qquad \text{or} \qquad C_1 = \frac{Q_M}{k} + \frac{A}{k}z
$$

Stuffing this back into the previous equation:

$$
\frac{\partial T}{\partial z} = -\frac{A}{k}z + \left(\frac{Q_M + Az_M}{k}\right)
$$

and integrating a second time gives:

$$
T = -\frac{A}{2k}z^2 + \left(\frac{Q_M + Az_M}{k}\right)z + C_2
$$

If the temperature at Earth's surface is T_s , $C_2 = T_s$. The geotherm is thus given by

$$
T = -\frac{A}{2k}z^2 + \left(\frac{Q_M + Az_M}{k}\right)z + T_S
$$

where *A* is the volumetric heat production rate and Q_M is the basal heat flow at depth z_M . Note that this equation reveals that the basal heat flow contributes $Q_M z/k$ to the temperature at depth *z*.