Lecture 2 Intro to Heat Flow

Surface heat flow

Heat flux from the Sun (mostly reradiated): 400 W/m² Heat flux from Earth's interior: 80 mW/m² Earthquake energy loss: 0.2 mW/m² Heat flow from human? energy intake: 2000 "calories" \approx 8000 kJ (W = J/s) 8000 kJ / 24 hr = ~100 J/s = 100 W (1 day \approx 80,000 s) surface area: 2 m x 1 m = 2 m² 50 W/m²! — or one lightbulb

Types of Heat Transport

conduction convection radiation—electromagnetic radiation advection

Relationship Between Heat Flow & T Gradient: Fourier's Law

The rate of heat flow is proportional to the difference in heat between two bodies. A thin plate of thickness z with temperature difference ΔT experiences heat flow Q:

$$Q = -k \frac{\Delta T}{z}$$
 units: W/m^2 or J/m^2s

where k is a proportionality constant called the *thermal conductivity* (J/msK):

Ag	418
rock	<u>1.7–3.3</u>
glass	1.2
wood	0.1

We can express the above equation as a differential by assuming that $z \rightarrow 0$:

$$Q(z) = -k \frac{\partial T}{\partial z}$$
 units: $\frac{J}{m^2 s} = -\frac{J}{msK} \frac{K}{m}$

(We use a minus sign because heat flows from hot to cold and yet we want positive T to correspond to positive x, y, z.)

In other words, the heat flow at a point is proportional to the local slope of the T-z curve (the geotherm).

If the temperature is constant with depth $(\partial T/\partial z = 0)$, there is no heat flow—of course! Moreover, if $\partial T/\partial z$ is constant (and nonzero) with depth $(T(z)=T_{zo}+mz)$, the heat flow will be constant with depth; this is clearly a steady state.

Generalized to 3D, the relationship between heat flow and temperature is:

$$Q = -k\nabla T = -k\left(\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z}\right)$$

i.e., the heat flow at a point is proportional to the local temperature gradient in 3D.

Relationship Between T Change and T Gradient: The Diffusion Equation

Of course, if the heat flow is *not* constant with depth, the temperature *must* be changing. The temperature at any point changes at a rate proportional to the local gradient in the heat flow:

$$\frac{\partial T}{\partial t} = -\frac{1}{\rho C_P} \frac{\partial Q}{\partial z} \qquad units: \quad \frac{K}{s} = \frac{1}{(kgm^{-3})(J/kgK)} \frac{J/m^2s}{m}$$

So, if there is no gradient in the heat flow $(\partial Q/\partial z = 0)$, the temperature does not change. If we then stuff the equation defining heat flow as proportional to the temperature gradient $(Q = -k \partial T/\partial z)$ into the equation expressing the rate of temperature change as a function of the heat flow gradient $(\partial T/\partial z \alpha \partial Q/\partial z)$, we get the rate of temperature change as a function of the curvature of the temperature gradient (perhaps more intuitive than the previous equation):

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \frac{\partial^2 T}{\partial z^2} \qquad units: \quad \frac{K}{s} = \frac{J/msK}{(kgm^{-3})(J/kgK)} \frac{K}{m^2}$$

And, in 3D, using differential operator notation (∇^2 is known as 'the Laplacian'):

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \nabla^2 T$$

This is the famous 'diffusion equation'. Wheee! It can be expressed most efficiently as

$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T$$

where κ is the thermal diffusivity (m/s²):

$$\kappa = \frac{k}{\rho C_P}$$

Heat Production: The Heat Production Equation

Rocks are radiogenic (to varying degrees), so we need some way of incorporating heat generation. We will use A for heat generation per unit volume per unit time (W/m^3 or J/m^3s). This adds a term to the diffusion equation, giving the 'heat conduction equation':

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C_P} \nabla^2 T + \frac{A}{\rho C_P}$$

Most of the heat generation in Earth is from the decay of 238 U, 235 U, 232 Th, and 40 K. Radiogenic heat production (μ W/m³) of some rocks (from Fowler, *The Solid Earth*):

granite	2.5
average continental crust	1
tholeiitic basalt	0.08
average oceanic crust	0.5
peridotite	0.006
average undepleted mantle	0.02

Calculating a Simple Geotherm Given a Surface Heat Flux & Surface T

With no erosion or deposition and a constant heat flux, a steady-state thermal gradient can be established. By definition, at steady state

$$\frac{\partial T}{\partial t} = 0$$

and the heat conduction equation can then be simplified and re-arranged:

$$\frac{k}{\rho C_P} \frac{\partial^2 T}{\partial z^2} = -\frac{A}{\rho C_P} \quad \text{or} \quad \frac{k}{\rho C_P} \nabla^2 T = -\frac{A}{\rho C_P}$$

or:

$$\frac{\partial^2 T}{\partial z^2} = -\frac{A}{k}$$
 or $\nabla^2 T = -\frac{A}{k}$

in other words, the curvature of the geotherm is dictated by the heat production rate A divided by the thermal conductivity k. Pretty simple. To calculate the geotherm, we integrate the above equation, getting:

$$\frac{\partial T}{\partial z} = -\frac{A}{k}z + C_1$$

We can evaluate C_1 if we specify the surface heat flow, $Q_s = k \partial T / \partial z$, as a boundary condition at z = 0:

$$Q_s = kC_1$$
 or $C_1 = \frac{Q_s}{k}$

Stuffing this back into the previous equation:

$$\frac{\partial T}{\partial z} = -\frac{A}{k}z + \frac{Q_s}{k}$$

and integrating a second time gives:

$$T = -\frac{A}{2k}z^2 + \frac{Q_s}{k}z + C_2$$

If the temperature at Earth's surface is T_s , $C_2 = T_s$. The geotherm is thus given by

$$T = -\frac{A}{2k}z^2 + \frac{Q_s}{k}z + T_s$$

where A is the volumetric heat production rate and Q_s is the surface heat flow.

Calculating a Simple Geotherm Given a Basal Heat Flux & Surface T

Let's calculate a geotherm dictated by a surface temperature and a basal (e.g., Moho) heat flux at depth z_M . We integrate once as above:

$$\frac{\partial T}{\partial z} = -\frac{A}{k}z + C_1$$

and, if we set $Q_M = k \partial T / \partial z$ at z_M as a boundary condition, then

$$\frac{Q_M}{k} = -\frac{A}{k}z + C_1 \qquad \text{or} \qquad C_1 = \frac{Q_M}{k} + \frac{A}{k}z$$

Stuffing this back into the previous equation:

$$\frac{\partial T}{\partial z} = -\frac{A}{k}z + \left(\frac{Q_M + Az_M}{k}\right)$$

and integrating a second time gives:

$$T = -\frac{A}{2k}z^2 + \left(\frac{Q_M + Az_M}{k}\right)z + C_2$$

If the temperature at Earth's surface is T_s , $C_2 = T_s$. The geotherm is thus given by

$$T = -\frac{A}{2k}z^2 + \left(\frac{Q_M + Az_M}{k}\right)z + T_s$$

where A is the volumetric heat production rate and Q_M is the basal heat flow at depth z_M . Note that this equation reveals that the basal heat flow contributes $Q_M z/k$ to the temperature at depth z.