
Equation of State

First, density, ρ (g/cm3) is essentially the reciprocal of volume V (cm3) times molecular
weight, M:

ρ = M V/

Effect of Temperature: Expansivity

The thermal expansivity, α, is 

α
∂
∂

= 





1
V

V

T P

Integration gives the total effect on volume with changing temperature
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Holland and Powell [1998] advocated a relationship between expansivity and
temperature T(K), defined by a single constant a°  for each mineral:
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where V(T) is the molar volume at temperature, Vo is the molar volume at STP, and To =
298K.

The density at elevated temperature  ρ(T) is related to the density at STP ρo by:

ρ ρ( )T eo= −Φ

Effect of Pressure: Bulk Modulus

The isothermal compressibility, βT, describes how volume changes as a function of
pressure:
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The isothermal bulk modulus, KT, (the reciprocal of the compressibility) is usually
used instead:
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Moduli at High Temperature

The isothermal bulk modulus at elevated temperature KT(T) is related to the isothermal
bulk modulus at STP KTo by:
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where δT is the second Grüneisen parameter:
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The shear modulus at elevated temperature µ(T) follows in similar fashion from the shear
modulus at STP µTo:

µ µT T oT e( ) = −ΓΦ
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Moduli at High Pressure

The relationship between strain ε and volume or density is
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where

ƒ = −ε

is the compression. The compression can be calculated recursively from
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where
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and
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typically evaluated at To.  The density at elevated pressure ρ(P) is then

ρ ρ( ) ( ) /P o= + ƒ1 2 3 2

Properties at High Temperature and Pressure

The bulk modulus at elevated pressure and temperature KT(T,P) is
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The expansivity at elevated pressure and temperature α(T,P) is
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The isentropic or adiabatic bulk modulus KS is
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where  γth is the first Grüneisen parameter:
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The shear modulus at elevated pressure and temperature µ(T,P) is
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The density at elevated pressure and temperature ρ(P,T) is
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From this it is possible to calculate the P-wave velocity VP, shear wave velocity VS, and
Poisson’s ratio ν:
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VS = µ ρ/

ν µ µ= − +( ) /( )3 2 6 2K KS S

Physical Properties of Rocks

The physical property Ψ of a mineral aggregate can be calculated from the physical
property Ψi of n constituent minerals using a a Reuss average (uniform stress):
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a Voigt average (uniform strain):
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or a Voigt–Reuss–Hill average:
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where νi is the volume proportion of each mineral. Because mass in aggregates is a
simple sum of component masses, only ΨV is used in calculating ρ for aggregates.
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